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Preface

The purpose of this thesis was to develop a CAD package to automate the development of multivariable

controllers based on the Quantitative Feedback Thecry design technique developed by Dr. Horowitz. During

this thesis effort, I had the opportunity to gain experience in a newly emerging field of control theory while

having the opportunity to develop a unique software package. Work performed using the CAD package

has suggested that it will substantially reduce the difficulty and time required to design a QFT controller.

My sincere thanks go to my advisor Dr. Constantine Houpis for his advice, time, and tireless effort

throughout my thesis effort and also to Dr. Horo•'itz and Dr. Lamont for their guidance and insight they

provided %hile on my committee. I would also like to give special thanks to Capt. Jeff Bradley for putting

my QFT CAD package to the test on his thesis project. The software could never have reached its present

stage in the development process without knowledge gained through Capt. Bradley's work. Finally, I would

like to th.tnk my fellow% classmates for their support and wish them the best of luck in their careers.

Richard Robert Sating

i. . . . . . . .. . .. . . .
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Abstract

This thesis describes the development of an analog MIMO Quantitative Feedback Theory (QFT) CAD

package for the automation of the multivariable control design process. The CAD package is capable of

carrying a design from probiem setup through the design process to a frequency domain analysis of the

compensated MIMO system. The package automates the selection of the weighting matrix, formation of

the square effective plants, the polynomial matrix inverse required to form the equivalent plants, generation

of templates, selection of a nominal plant, generation of stability, tracking, disturbance, gamma, and com-

posite bounds, loop shaping, design of the prefilter elements, and the frequency domain analysis of the

completed design. Disturbance allocation is automatically Wrfcrmed while generating the tracking bounds.

The package allows gain scheduling to be used in the weighting matrix. The improved method may be

applied for the case of a 2x2 effective plant. The package is implemented using Mathematica for use on

the Sun Workstatiions.

xxi



Introduction

1.1 Background

Quantititdtie Feedback Theory (QFT) was developed by Dr. Isaac Horowitz, professor emeritus at the

Umniersity of California at Davis. as a frequency response control technique for the control of systems with

uncertain plants and disturbance inputs. The first techniques were for a multiple-input single-output (MISO)

connmuouu, time system. In 1979 Quantitative Feedback Theory was further developed for use as a method

of control for multiple-input multiple-output (MIMO) uncertain continuous time systems. First in 1961,

th:; nmrc nte:;,ely in 1986. Dr. Horowitz extended the QFT control technique to the control of discrete

t.tc plants.

The fir,,' anilog QFT CAD package developed at ART, ICECAP-QFT. was developeu in 1985 by

Sandra Ce (9). Although the ICECAP-QFT CAD package was extended to handle digital control problems

in ;(9 bý\ Profecssor Constantine H. Houpis. Professor Gary B. Lamont, and Dr. Robert Ewing, it was still

lnmitcJ In ,IpI : ion to MISO control problems. A second QFT CAD package for both analog and digital

,.\''cr:, lh, since been dexeloped by Dr. Oded Yaniv at Tel-Aviv University in Isreal (22). QFT CAD

routi.?c', t.e a_'No been de,.eloped by Bailey (4), Chait (8). and Thompson (27). However, like ICECAP-

QFV. D,. Yani "s QFT CAD package and the CAD routines developed by Bailey. Chait, and Thompson

-.c cunt :1:n+1,cd In application to the control of MISO uncertain systems. The need therefore exists.

1,...a MIN.() QFT CAD package to automate the design process for the more difficult analog and discrete

MI"IO •,,rm system problem.

The need for automation of the design process was beto illustrated by difficulties encountered by

prcý ious QFT thesis students. Each student was faced with the task of implementing the complex QFT

process for the problem at hand. The time involved in working through the details of the design

prccs ~r7catl, increased the dift'icult\ of each thesis and limited the difficulty of problems attempted. In

addikion. the details of the custom implementation and the manual techniques used increased the possibility

of e-rros. These difficulties would be greatly reduced by the availability of a MIMO QFT CAD package.

Indusir' and academia has repeatedly stressed the need for such a CAD package.



1.2 Research Objectives

The objective of this thesis is to develop a MIMO QFT CAD package as a tool to be used in future

research and development work. As a tool, the CAD package will promote the use of the QFT control

technique in future thesis work as well as in the engineering community by automating the design process.

This thesis stresses the analog MIMO QFT design package.

1.3 Assumptions

Se\eral assumption- are made regarding the design specifications and the system to be controlled:

"* Plant uncertaint> can be expressed by a set of linear-time-invariant (LTI) transfer functions

"• Deterministic LTI transfer functions can be used to model sensor and actuator dynamics

"* Performance specifications can be expressed by use of LTI transfer functions as upper and

loxer bounds

" Stability requirements are constant across all frequencies (it is not unreasonable to allow them

to be a function of frequency)

"* Each ýxeighting matrix element may consist of a unique s-plane LTI transfer function for each

plant case

"* Efctli\c mxnt square plant matrix, P,, exists

"* Dixional dominance achievability at infinite w

"* No outside disturbances present

1.4 Limitations

The MIMO QFT CAD package, as currently implemented, imposes several limitations:

"• Diagonal prefilter matrix F

"• Diagonal compensator matrix G

"* QFT Method 2 design for 2x2 systems only

"* Only continuous-time control system design is considered

1-2



1.5 Scope

The research conducted for this thesis covers several areas:

"* Selection of a development environment from available programming languages and control

packages

"* Investigation of numerical precision requirements for successful implementation

"* Investigation of previous QFT thesis work

"* Investigation of previous QFT CAD packages

"* Investigation of current QFT control techniques for control of MIMO systems

"* Investigation of Air Force contractor plant data formats

"* Implementation of current QFT control theory to the development of a continuous-time MIMO

QFT CAD package

"* Validation of MIMO QFT CAD package based on previous thesis work

1.6 Requirements

Several requirements have been imposed on the capabilities of the MIMO QFT CAD package:

"* Loading of p×I plant matrix in contractor format

"* Allo% insertion of a bxm weighting matrix

"* Alho% insertion of a mxp sensor gain matrix

"* Alloy, insertion of actuator and sensor dynamics

"* Formation of mxm plant matrix inverse P,'

"* Extensible to discrete-time control problems

"* Extensible to the QFT Improved Method 2 design technique

"* Addition of MISO QFT subroutines

"* Allo%, transfer of completed design to MATRIXx

1.7 Software engineering requirements

"* Uer interface
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"* Modular software

"* Docunmentation

1.8 Approach

The first step in the thesis effort is the review of existing programming languages and control CAD

packages from which a platform is chosen for the development effort. The development effort begins with

the development of routines which accept the MIMO design data and transform the MIMO problem into

a set of MISO equivalent problems. Software is then developed to carry out the QFT design procedure

for the MISO equivalent problems. The final step in this thesis effort is the validation of the software

implementation of the M1MO QFT CAD package by comparing results obtained from the CAD package

to those obtained by previous thesis students for two MIMO analog design problems.

1.9 Summary

This thesis consists of five chapters. The first chapter introduces the thesis problem. The second

chapter provides an overview of MIMO QFT theory as applied in this thesis. Chapter 3 discusses the

niethod by \which the \11\IO QFT theory is applied during the development of the CAD package. In Chap.

4 the (,peration of the CAD package is validated by comparing results obtained from this package to those

obtained in tN'o previous thesis efforts. Conclusions and recommendations are then presented in Chap. 5.
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2 Basic Theory

2.1 Introduction: Overview of Multivariable Control Problem
Quantitative Feedback Theory (QFT) is applied in this thesis investigation to the control of uncertain

continuous time MIMO plants which are free from outside disturbances. The uncertain square plant Pe

shown in Fig. 2-1 has m inputs and m outputs. By use of a diagonal compensator G and a diagonal prefilter

F in the feedback structure, shown in Fig. 2-2, it is desired that the closed loop system meet a set of stability

and performance specifications defined for the problem. Tloce specifications are discussed in detail in

Sec. 2.5. If a compensator and prefilter can be designed which meet the stability and performance require-

ments for all controlled outputs and for all plant cases, then a robust control system design is achievable

and the design is considered successful.

When using a diagonal compensator and prefilter, the closed loop system has m feedback paths. Each

fecdback path, with asscciated prefilter and compensator, is a channel of the QFT controller.

III I so Yi
u2 , Y2

Urn Y.

Fig. 2-1 A MIMO uncertain plant

U, YM

L '' - - - - - - - - - -

Fig. 2-2 MIMO QFT controller block diagram



2.2 The PlantP

The plant model P to be controlled is in general constituted by four component parts. A block diagram

showing the placement of the pxl contractor plant model PCONT, the actuator dynamics TACT, the sensor

dynamics TSENS. and the mxp sensor gain matrix WSENS is shown in Fig. 2-3. The plant P of dimension

mxi is, in general, not square.

For a plant model to be used in a QFT design, the plant must be square. The square plant Pe of

dimension mxm is formed from the non-square plant P by use of the weighting matrix W as shown in the

block diagram in Fig. 2-4. Algebraically, the plant P and the effective plant Pe can be expressed, respec-

tively, as follows:

P =WSENS" TSENS PCONT" TACT (2-1)

Pe P-W (2-2)

X1 
----

a40,-TAC 

yPCONT 0 YSENS

o 10 
0

Actuators Sensors

Fig. 2-3 Components of the Plant P

UX o- y2

W P°
rr,,

Fig. 2-4 Formation of square effective plant P
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2.3 Modeling of Uncertain Plants

Any real-world system to be controlled will inevitably be nonlinear, time varying, and uncertain to

son-; extent. Most control techniques, however, are directly applied only to linear-time-invariant (LTI)

systems (13). If a set of J LTI models can be obtained which effectively model the real world system,

then some techniques can be applied to design a robust controller. By basing its design on such a set of

LTI models, the QFT design technique produces a robust controller which will control the system in a

desirable manner despite its real-world properties. This is so, even for a large class of uncertain nonlinear

time varying plants (21:2-4).

An example of uncertainty in the transfer function for a single-input single-output (SISO) plant model

at several frequencies is illustrated by the Nichols plot shown in Fig. 2-5. The scattering of the plant cases

about the nominal plant case (heavy dot) is shown along with an outline enclosing the plotted plant cases.

The range of plant cases is shown on the Nichols Chart (NC) for three different frequencies. The range

,oI , -I

10-- It

.I 'F I •

-20- 1

606f, 340 -320 30 0 -5- 6 -10 -160 -O-14 0 -2 - -IOU - -80 A

Fig. 2-5 Uncertainty in SISO plant transmission
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The range of plant cases is shown on the Nichols Chart (NC) for three different frequencies. The range

on the NC of possible plant transmissions at a given frequency defines the region of uncertainty at that

frequency. For a QFT design, a sample set of plant cases taken over the range of plant uncertainty is used

to model an uncertain plant. It is particularly important that the sample set include plant cases at the

extremes of the region of uncertainty on the NC for each frequency of interest. This allows the QFT design

procedure to take the full range of plant variation into account.

Uncertainty, nonlinearity, and time variance in a MIMO plant model are thus modeled by using a set

of J LTI plant models. For a MIMO system, however, each plant case consists of an mxm matrix of

transfer functions. The uncertain MIMO plant is therefore represented with a set of mxm transfer function

matrices, one matrix for each plant case. As in the SISO case, the sample set should include plant cases

at the extremes of plant variation on the NC.

2.4 Actuator and Sensor Models

Dynamics of the actuators and sensors used to control a system are in general, and for the purpose of

this thesismo •neled by deterministic LTI transfer functions. The actuator transfer functions TAC'Ti(s) model

the dynamics involved in exerting the control effort required to apply an input to the plant. Likewise, the

sensor transfer functions TSENS,(s) represent the dynamics of the sensors used to measure the real-world

plant outputs. The block diagram in Fig. 2-3 illustrates the use of actuators and sensors in the control of

a real-%%orld sysiem. Each actuator and sensor is, in general, modeled by a unique transfer function.

2.5 Problem Specifications

Periormance design specifications are placed on the controller design. Success of the design is judged

mainl, on the the basis of satisfying these specifications. Other factors of importance which also may be

considered include the order of the controller and prefilter transfer functions, the bandwidth, and. in digital

systerns. the sampling rate. However, for the purpose of this thesis, performance and stability specifications

are enipha,ized.
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2.5.1 Performance Specifications

Performance specifications for a compensated MIMO plant, shown in Fig. 2-6, can be given in either

the frequency domain or the time domain. For example, consider the role of the elements of the compen-

sated system control ratio matrix:

T(s) tl2(S) (2-3)
0 t21(S) t22(S) 

2

where tij(s) represents the control ratio between the ith output and j th input as illustrated in Fig. 2-7.

The set of plots shown in Figs. 2-8 and 2-9 illustrate the upper and lower performance bounds of the

performance specifications in the time domain and frequency domain, respectively, for the compensated

AFTIT-16 aircraft as defined in a previous QFT thesis investigating fault tolerance (2:4-26). The four

plots in each figure are arranged in positions corresponding to the 2x2 closed loop transfer function matrix

elements to which they apply.

For the off-diagonal transfer function elements, only an upper response bound is specified, since it is

desired that the response of the off-diagonal MISO loops remain below a specified bound. For the purpose

of this thesis effort, the bound must be specified in the frequency domain in the form of a transfer function.

Timc dounain performance specifications for the Lambda Unmanned Research Vehicle (URV) are

shoNn in Fig. 2-8. Both upper and lower tracking bounds, c(t)u and c(t)L respectively, exis, in the time

A------- -------

rlr2

Fi•. 2-6 Compensated system Fig. 2-7 CLTF Matrix Elements
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domain for the response of each diagonal tii(s) transfer function element of T(s) to a step command applied

to its respective command input (see Y ;. 2-7). These upper and lower bounds constrain the step response

magnitude to remain within a specified envelope. Only an upper bound exists in the time domain for each

off-diagonal closed loop (CL) transfer function tij(s), where i •j, for a step command input and for a

diagonal F. The upper bound constrains the magnitude of the undesired response due to coupling between

channels to remain below a specified envelope.

The time domain and frequency domain specifications can be related by the Laplace transform. The

complex frequency s times the Laplace transform of the time domain step response bounds yields the

frequency domain bound transfer functions, i.e.,

TRU(s) = S [•[c(t)u] (2-4a)

TRL(S) = S [c (t)L]] (2-4b)

The converse does not apply in general, however, because there is no specification for phase in the

frequency domain.

Frequency domain specifications foi the diagonal transfer functions include both upper and lower

tracking bounds. TRL_ and TRL respectively. These specifications define the range of frequency response

magnitudes permitted for the controlled output with respect to its corresponding command input. The

purpose of these bounds is to desensitize the closed loop system to variation in the plant in its significant

frequency range. There is a theorem, however, which states that any decrease in sensitivity; achieved in

any wo range must be paid for elsewhere in the frequency spectrum (17:1-9). This concept is expressed by

the following equation:

LJ Log dI =o o (2-5)
0
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where Sp is the sensitivity of the effective plant. A practical consequence of this is that the allowed variation

should exceed the plant variation in higher (than the significant) o range. This can be achieved if TRL has

an excess of poles over zeros greater than that of TRU.

2.5.2 Stability Specifications

In addition to desirable performance, the QFT controller must provide an acceptable stability margin.

The stability margin can be specified in terms of a phase margin y, a gain margin gn, or the corresponding

ML contour on the NC. The relationship between these three measures of stability, as applied in this thesis

effort, is illustrated on the NC shown in Fig. 2-10. If any one of the three stability requirements are

specified, the remaining two can be calculated. These calculations are discussed in Sec. 3.13.1.

The ML contour is the stability specification used directly for the QFT design technique, placing an

upper limit on the magnitude of the closed loop frequency response. The ML contour on the NC fcrms a

boundary which must not be violated by a plot of the open loop transmission transfer function for the

compensated system fbr all J plants.

Nichots LhOrt

3C€

I dB ML contour

Ph~s~' Ang Phasege )

Fig-. 2- 10 Stability Specifications
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2.6 Insertion of a Weighting Matrix

In cases where the mxl plant matrix is not a square matrix of the desired mxm dimensions, an Ixm

weighting matrix W must be selected to form a square mxm effective plant Pe. A block diagram illustrating

the insertion of a weighting matrix is shown in Fig. 2-4.

For control of a multivariable system, one must apply at least as many inputs to the system as outputs

to be controlled. When more plant inputs are available than required for control purposes, the designer

has additional degrees of freedom in the blending of plant inputs used to control the system. The weighting

matrix W used to allocate the control effort to the plant inputs must be chosen such that all effective plants

are full rank and the sign of the effective plants in the limit as o(--)- is the same for all plant cases (17:3-15).

Once this requirement is satisfied, the designer seeks to obtain a minimum- phase effective plant. By

aprf.,ing the Binet-Cauchy theorem, the designer can determine whether a minimum-phase effective plant

is achievable by the proper choice of the weighting matrix elements (17:5-17). If the condition of mini-

nium-pha,, can be satisfied, the designer may further refine the choice of weighting matrix elements to

minimize the control effort required and to minimize the range of uncLrtainty of the effective plant transfer

lunc:•tn elements, as plotted on the NC.

In ,ome multivariable control problems. the degree of uncertainty in the system to be controlled may

render impo~s,,ible a successful design (17:5-15). In these cases, the weighting matrix can be used to

implefcent ga•m scheduling to reduce the uncertainty to a tolerable level. In an aircraft control problem.

for exaniplc. measurements of variables such as altitude. Mach, angle of attack, and dynamic pressure may

be axailblc in addition to the defined outputs. Functions of these additional measurements may then be

used in the xveighting matrix of an aircraft flight control system to compensate for variation in plant

d~namics (xer the flight envelope.
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2.7 Polynomial Matrix Inverse

In order to begin the design of the QFT controller, the MIMO effective plant Pe is transformed into a

set of MISO equivalent plants. This transformation transforms the difficult MIMO design problem into a

set of straightforward MISO design problems. The simplicity gained by use of this transformation is one

of the major strengths of the QFT design process. The method of transforming the MIMO plant model

into a set of the MISO equivalent plants is given below without proof. For more information see (17:Ch.

3).

First, the polynomial matrix inverse of the effective plant matrix is taken:

p-l = ipij = lI/qij (2-6)

Next, the elements of P_- are Laverted to form the Q matrix:

Q = I= /p'J (2-7)

The diagonal dominance condition is checked before the design process is continued. The diagonal

dominance condition must be met by the elements of the Q matrix in order for a QFT Method 1 design to

rOe tractable (17:3-17). If the condition of diagonal dominance is not met, then a QFT Method 2 (improved

methx!) design must be performed. If the result of the diagonal dominance test is unacceptable from the

point of x iew of the designer, the choice of weighting matrix W can be revised and the Q matrix recomputed.

QFT Me:hods 1 and 2 are discussed in Sec. 2.8, and the implementation of the diagonal dominance test is

discussed in Sec. 3.9.

The role of the Q matrix elements in the array of MISO equivalent plants is illustrated in Fig. 2-11.

The NISO loopxis are decoupled except through the disturbance inputs. Each MISO loop has one command

input and one disturbance input. The disturbance input is a function of the other controlled outputs. By

the principle of superposition. the MISO loop transmission consists of both a tracking and a disturbance

component. However, when using a diagonal prefilter. only the diagonal MISO loops have a transfer

finci ion component due to tracking:
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tij = tr, + td4 (2-8)

while the off-diagonal loops, with fij = 0 and i # j, have a transfer function component due to disturbance

only:

tij = td,• where i • j. (2-9)

Expressions for tracking and disturbance transfer function components can be derived from the signal

flow graph of the (ij) MISO loop-

gi (qii)40 = fij (L) (2-11)(r) i + g(qi) I + (L(i2I

(dij)l (qii)[ (di)l (qii)(

1 -,- 1(q1 ): 1 + (Li)/

where I is the index which specifies one of the J LTi plants, i.e., I = 1, 2. J, which the quantities Li

and q,, are associated with, and where:

L, = g q,, (2- 11)

is defined as the kI<xp transmission transfer function.

, dl iA o dz d 1¢~ d 3

fl,. g' f 13 g

- I - I -1

dt d22 d, 3

-I - - I

f" g f" 92 f23 gr
r a- 9 - r 2 , , 3

,7-q 22 q..

fr• f 3 2 93 f 3 3

2% q 33

-I -I -*1

Fig, 2-11 MiSO equivalents for 3 by 3 effective plant
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The disturbance input, a function of all other controlled outputs, can be expressed by the equation:

d= - tk (2-12)
qik

k-i

These MISO loops, each representing a closed loop transfer function element tij in terms of the

compensator element gi, the prefilter element fij, and effective plant qij are required to satisfy the performance

and stability design specifications placed on the closed loop system.

For the diagonal MISO loops with upper and lower bounds:

aii 5 titl - bi, for I=1,2,...j (2-13)

For the off-diagonal MISO loops with an upper bound:

Itij 1 < bij for 1= 1,2....J (2-14)

For each row of MISO loops a stability margin is defined:

gi (q)i < ML for I= 1,2,....J (2-15)
1+- gi(qi4'i

In order to design a compensator gi for the MISO loops, the specifications are translated into bounds

on the NC which must not be violated by the open loop MISO transmission giqii. In order for these bounds

to take into account all plant cases, a set of templates, each outlining the range of plant uncertainty at a

particular frequency, are used to generate the bounds. Template formation and the use of the templates as

a tool for generating bounds on the NC is discussed in the following sections.

2.8 Improved Method

When using the QFT" Method I design procedure, the compensators and prefilters are designed based

on the ni.m set of MISO loops in which the effective plants obtained from the Q matrix are used. When

one of the m compensators gi is designed successfully, the compensator exceeds the frequency domain

performance specifications for some range of frequencies. In addition, correlation may exist between the

uncertainty in the MISO loops in which g& appears and the MISO loops for which the next compensator

is to be designed. When the next compensator is designed, neither the improved performance due to g
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nor correlation in the uncertainty in the MISO loops is taken into account. Failing to take this additional

information into account leads to overdesign and may even preclude the possibility of a successful design

(17:5-15). This is the price paid for transforming the difficult MIMO problem into a set of straightforward

MISO problems (17:5-1).

The improved method, also known as QFT Method 2, takes into account the improved performance

of the designed MISO loops and any correlation between the uncertainty in the designed MISO loops and

the MISO loops in which the compensator to be designed next appears. The improved method requires

the derivation of the effective q plant transfer function to be used in the row of MISO loops in which the

next compensator to be designed appears, i.e. for a 2x2 system in which the compensator gi has been

designed:

q2: -(I -L 1  where Lt =giqit (2-16)1 -- y1,j2 -ý- 1-

For a 2x2 system in which the compensator g2 has been designed:

qit (I+4L:)
qe -q ( L where L2 = g2q22 (2-17)1 -3'1" L2

For a 2,2 systcm r' and y:1 are defined as:

'= 1 p P2p21 (2-18)

In thjo thesis effort, and the current version of the CAD package, the improved method is addressed

for a N1 MI'O problem only. For more information on the improved method, see (17:5-1).

2.9 Formation of Templates

A ,lant templ!,c outlines the range of uncertainty in the frequency domain transmission of a plant

transfer function for a specific frequency. as plotted on the NC. The template is formed by first plotting

the frequenc\ domain transmission for each of the J plant cases, then enclosing the set of plant points with

an outline. Figure 2-12 illustrates an example of a set of J = 15 numbered plant points and the template

border assigncd wt them. The selection of the template border is to some extent a matter of engineering
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judgment. The method by which the border is defined in the context of this thesis is discussed in detail

in Sec. 3.11. It is important to note that the absolute location of the template points on the NC is

unimportant; only the location of the plant cases relative to each other is required to define a template

border. When performing a manual QFT design, the template borders are drawn on clear plastic and cut

out for use on the NC. Plant templates must be generated for sufficient frequencies over the significant

(o range. The template frequencies are the frequencies for which bounds on the INGSO open loop trans-

mission giqii are generated and plotted on the NC. The bounds are then used for the design of the

compensator gi.

A nominal plant transfer function qiio is also defined. The identified nominal plant point on the template

is used as the reference point upon which to execute the QFT design process. The bounds plotted on the

NC are bounds on the nominal open loop transmission Lie = giqiio. The nominal template point, while

often one of the J plant points, in general need not be chosen from among the J plant points. The nominal

template point need not even lie within the boundary of the template. The choice of nominal point has no

effect on the template outline regardless of its location; the nominal point is a point of reference used when

plotting the bounds. Nevertheless, the nominal plant is customarily chosen to be the lower left plant case

of the templates whenever possible.

10 71

0 10 -100 - 0 - 0 - '0 -0 diS il

Fig. 2-12 Sample template with numbered plant cases
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2.10 Bounds on Nichols Chart

For a given row i of MISO loops, bounds on the nominal open loop transmission Lio = giqiio are

plotted on the NC. one set for each MISO loop in the row. For a template, generated for a given frequency

(o = toi (see Fig. 2-13), several bounds may be included in the set plotted on the NC. These bounds include

a stability bound, a disturbance bound, a tracking bound, and a gamma bound (Sec. 2.10.3). Each set of

bounds is replaced by a single composite bound before beginning a design. If a conpensatcr gi can be

designed such that all the bounds are satisfied, then the stability and performance specs for that row of

tij can be satisfied. The theory for each of these bounds is now discussed.

2.10.1 Stability Bounds

The stability bounds constrain the maximum closed loop transmission based on the open loop transfer

function to have a bounded magnitude:

gi (qiDi) < ML for l= 1,2,...j (2-19)
1 + gi(qii)I

This specification is met by requiring that the open loop MISO transfer function, for all J plants, does not

violate the ML constant magnitude contour on the NC. This can be assured by plotting a bound on the NC,

see Fig. 2-14. which the nominal open loop plant transmission Lio = giqiio must not violate. This bound

can be plotted for a given frequency by plotting the path of the nominal point while traversing the ML

Stability bound

Template

Nominal point ML.c..

Fig. 2-1 3 Template for bound Fig. 2-14 Plotting of stability bounds
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contour with the template generated for that frequency as shown in Fig. 2-14. Because the shape of the

template plotted at each frequency is unique, the stability contour plotted for each frequency is also unique.

2.10.2 Disturbance Bounds

The responses of the off-diagonal MISO loops result from coupling and are considered undesirable

components which are added to the commanded diagonal MISO loop response. Performance specifications

require that the magnitude of the transmissions tij for these cff-diagonal MISO loops remain below the

bounds bij where i ;j. From Eq. (2-9b) the upper bound implies the requirement:

Itul dij qii :q -bij for i*j (2-20)
I I + giq6_]

where the disturbance is a function of all other controlled outputs:

S= _y tkj (2-21)
qik

Since the relative phases of tkj and qik are not aprior known, one must use the specifications which dictate

that Id,jI is less than an upper bound for each plant case I in the set of J plants:
m

(Idjimax)i y bkj (2-22)Iqikl/

The most extreme upper bound on IdjjI for all the J plant cases is then:

IdujImnu = I ( Idi imax )I ]max over 1 (2-23)

Based on• Eqs. (2-20) and (2-23) a lower bound can be placed on I I + L I

I I + 14 I > lq41 Idujlmax (2-24)
bij

B. substituting , = 1 Eq. (2-24) is transformed such that the disturbance bound is plotted on them

in erse NC:

'm ______< i (2-25•)
I - m IqiI Idijlmax
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Simplifying by using the symbol MD to designate the inverse NC constant magnitude contour:

r 1< MD where MD = Iqiil d (2-26)

In general, MD is different for different plant cases since qii is different for different plant cases. From this

point forward the inverse NC constant magnitude contour is referred to as the MD contour.

Equation (2-26) is in the form of a unity feedback system for which disturbance bounds can be drawn

by use of the templates on the inverse NC. The inverse NC, the NC turned upside down, is used because

it allows a bound on Lio to be plotted on the NC given the restriction on m = (Lio- in Eq. (2-26).

Assume for a moment that for plant case 1, illustrated on the template in Fig. 2-15, Eq. (2-26) places the

most severe restriction on m (and on Lio = -L) at all phase angles of ion, i.e., results in the maximum

value on the right-hand-side of Eq. (2-26). The disturbance bound can then be plotted as shown in Fig.

2-16. where the disturbance bound is traced by the nominal point as the MD contour associated with plant

case I is traversed such that the point on the template border corresponding to plant case I is in contact

with the MD contour at all times. This is so because it is assumed that for plant case I the most extreme

bound exists on Lio at all NC phase angles at which the bound is plotted. In general, a different point on

the template border results in the most severe restriction on Ljo at each phase angle (p for which the bound

is plotted. This issue is addressed in Sec. 3.14.2. For more information on the use of the inverse NC for

plotting disturbance bounds. see (11:712).

Boarder of template ( MD contour ),_/

Plant -ase I

0'

"Nominal point
Disturbance bound

Fig. 2-15 Template w ith plant case I Fig. 2-16 Formation of disturbance bound
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2.10.3 Gamma Bounds

Gamma bounds are a useful tool for improved method designs. Gamma bounds allow the designer to

design the current compensator such that the next effective plant does not have right-half-plane (RHP) poles

due to the current compensator design. Gamma bounds are not always mandatory. In the 2x2 case, if row

I is designed first, a lower bound is placed on the denominator of q2.e as defined by Eq. (2-16):

11 - y12 + LII < M-y, (2-27)

This requirement is similar to that used for generating stability bounds. The method by which this

requirement is used to form bounds on the NC is discussed in detail in Sec. 3.14.3.

2.10.4 Tracking Bounds

Tracking bounds are used to insure that the variation in closed loop frequency domain transmission

t := tij for i = j of the diagonal MISO loop does not exceed the variation 8 R permitted by the performance

tolerances aii and bii where:

8R = 201 ii = 20log(bii) - 20 log(abi) (2-28)Sta,_,) =

The variation in the closed loop transmission results from uncertainty in both the response due to

tracking and from the presence of the disturbance input:

tii = tr, + td,; (2-29)

where tr, and td. are given by Eqs. (2-10a) and (2-10b).

A port ion of the permitted variation 8R of the total response tji is therefore allocated to the transmission

due to disturbance td. resulting in a reduced range of variation 8R' for the transmission due to tracking

tr, %here:

8R' = 20 10I( = 20 log(bii') - 20 log(aii') (2-30)
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Because the relationship between tj, and td,, is additive, the permitted variation is represented in terms

of magnitude rather than log magnitude when allocating for disturbance:

ATr, = 10 (8R/20) = b - aii (2-31a)

AT,' = 1001R'1211 = bii' - aii' (2-31b)

By allocating the portion 2 rTd to disturbance, the permitted variation in closed loop transmission tri

becomes ATh,', as shown in Fig. 2-i7. The permitted closed loop variation in tracking is now:

ATri' = ATr, - 2 Td, (2-32)

where:

A`ri = bii - aii (2-33)

The performance tolerances for the closed loop transmission tr, then become:

aii' = aii + Td. (2-34a)

bi' = bii - 7d,, (2-34b)

The requirement on the transmission due to tracking tri becomes:

aii' < 1 tr, • < bi)' (2-35)

And the requirement on the transmission due to disturbance td, becomes:

I td I _< 5 Td (2-36)

1.0

O.8 •r•,'"I'"bil

7 d~ -0.8 A7 ATr,'

0.6 . ai

SI I

01 0.2 1.0 2.0

Fig. 2-17 Allocation for disturbance
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With this disturbance allocation, tracking and disturbance requirements are placed on LI based on Eqs.

(2-34) and (2-35). The requirement on Li which is satisfied at a point on the tracking bound for a given

frequency to = wi and phase angle 4p on the NC is:

Lm(TR.•)- Lm(TR) _< 8R' (2-37)

where 8R'= Lm(Arr,') = Lm(A7ri-2Td,) and where TR,, and TR, are determined by maximizing and

minimizing the transmission with unity gain prefilter TR over the outline of the template:

TR = (2-38)

with the template placed with the nominal point on the tracking bound.

Based on Eq. (2-36) the method discussed in Sec. 2.10.2 is used to determine the point on the distur-

bance bound on Li for the diagonal MISO loop at to= oi and at the phase angle (p on the NC. From Eq.

(2-24) the constraint on Li for bij = Td4 is:

II + > IŽ lqi1 ldiilmax (2-39)Ir&k,l ( -9

wAith IdnIrna- defined by Eq. (2-23) with i= j. The constraint of Eq. (2-39), along with the template for

Co = (. is used to determine the location of the point on the disturbance bound.

The value of Td. is chosen such that Eqs. (2-37) and (2-39) place the same restriction on Li; this is the

value of Td,, for which the points on the tracking and disturbance bounds are identical at the phase angle

(p on the NC and the value for which the least restrictive composite bound point on Li will be generated.

The nmethod by which the CAD package determines this value of T4, is discussed in detail in Sec. 3.14.4.

Composite bounds are discussed in Sec. 2.10.5.

In general the value of Td, is unique at each w= oý and for each NC angle (p at which the bound is

plotted. Once a value of Td. is available at a given phase angle p. 8R' can be calculated and a point on

the tracking bound can be plotted. To plot a point on the tracking bound, pick an angle for Li,. say 0(.

Place the template fof the frequency of interest on the NC with the nominal point on the 0° axis. The
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template is then moved up or down the 00 axis as needed until the difference between the largest (TR.)

and smallest (TR.) closed loop transmissions is equal to the permitted variation in decibels:

Lm(TR.,,) - Lm(TR.) = 8R' (2-40)

The position of the nominal point is then marked on the 0' axis. This procedure is repeated for a

range of angles across the NC, using a unique Td, at each phase angle, and the bound contour is drawn

through the set of points. By constraining the nominal loop transmission to be on or above the tracking

bound, the actual variation in tii will be less than or equal to 8 R.

2.10.5 Composite Bounds

A set of composite bounds is often formed on the NC prior to compensator design. A composite

bound is formed by plotting only the dominant portions of a set of bounds, for each frequency. If the open

loop nominal transmission I. = giqiio, where quio is the nominal plant, when plotted on the NC, does not

violate the composite bound, then no bound from the original set of bounds is violated. For a successful

compensator design, all bounds on Ljo must be satisfied for an entire row of MISO loops and for all

frequencies of interest. One row of MISO loops for a 3x3 MIMO system, for example, would require a

stability bound. a trackin2 bound, and two disturbance bounds to be plotted for each frequency of interest.

For the case in which there are ten frequencies of interest, there would be a total of forty bound contours

to plot. By plotting only ten composite bounds in place of forty, clutter is reduced substantially.

2.11 Compensator Design

A compensator is designed which satisfies all requirements placed on it by the MIMO QFT specifica-

tions once the bounds for the entire row of MISO loops are plotted on the NC. The bounds for the entire

rou MISO loops must be satisfied since the same gi appears in all MISO loops in a given row. The bounds

for all MISO loops in a given row can be plotted together on the NC since the same open loop transmission

L,= g,qi, appears in all M]SO loops of a given row. The compenator is then designed based on the

bounds as plkted on the NC.
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The compensator is designed by properly shaping the open loop transmission such that all bounds are

satisfied at the respective bound frequencies. The shaping is accompanied by adjustment of the compensator

gain, and by adding poles and zeros as needed. Two main approaches exist for loop shaping. In the first

approach, the initial open loop transfer function is taken to be qiio, the nominal plant. The transfer function

gi is then designed by adding poles and zeros as needed, and adjusting the gain until a desirable loop shape

is obtained on the NC (18:Sec. 3.8.2). For the second approach, the open loop gain lio is designed directly

by beginning with a simple gain and then adding poles and zeros, and modifying the gain to obtain a

desirable open loop shape on the NC. The equation gi = Lio (qiio)-l is then used to compute the com-

pensator gi (18:Sec. 3.8.1 ). The second approach is valid only for a minimum-phase, stable qiio. The first

approach usually gives a smaller order compensator, while the second approach gives the designer an

indication of the degree to which the design can be optimized. The first approach is used here.

2.12 Prefilter Design

A compensator which satisfies all bounds on the NC guarantees that the range of variation in the closed

loop transmission tii is acceptable for the corresponding MISO loop, but does not guarantee that the

transmission lies entirely within the limits of the upper and lower tracking bounds bii and aii. A prefilter

is therefore designed such that the bounds bi and aii are satisfied for all plant cases. The procedure below

illustrates the method b:- which the prefilter is designed.

First. as for tracking bounds on the NC, a portion of the permitted range of variation of tii is allocated

to the disturbance. The maximum and minimum limits on the range of variation of tii are therefore made

more restrictive by the magnitude of the response due to disturbance Itdm•&x, as illustrated in Fig. 2-17 on

pagc 2-19. The tolerances on tr, become:

N" = - Itd.ImaN (2-41)

a. "' i - ltd.la- (2-42)
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Second, TR., and TR., the maximum and minimum values respectively of the diagonal MISO loop

transmission magnitude TR (hrjl with fij = 1), are determined at the template frequencies where TR is:
TR = I Li-Li(2-43)

1 + Li

TR.. and TR. are used to restrict the permitted range of variation about the nominal tri such that a

single nominal tr, can be plotted rather than requiring an array of J transmissions to be plotted on the Bode

plot, one for each plant case. It is easier to work with a single transmission within a pair of bounds then

to work with J transmissions within a pair of bounds.

The values TR. and TRmjý are obtained at each wi by placing the template for (ol on the NC with the

nominal point at the location of Lio = giqiio for w =oi. The template outline is then searched to determine

the maximum and minimum closed loop transmissions TR.. and TR,..

Finally, the bounds on the nominal tr, are computed:

Lm(bVj') - Lm(TR,.) (2-44)

Lni(a 1 ') - Lm(TR.) (2-45)

Once the prefilter bounds have been generated. a prefilter is synthesized such that the Bode plot of

the nuomunl tr, lies between the prefilter bounds and satisfies t,,(s) = 1 in the limit as s--O. Examples of

-- I

-. x imr, IIx 5

Fi. 2-18 Transmission without prefilter Fig. 2-19 Successful prefilter design

2-23



the Bode plot of t1, with prefilter bounds. both before and after the prefilter has been designed, are shown

in Figs. 2-18 and 2-19.

2.13 Simulation

The completed QFT design must pass several levels of testing and validation. In past thesis work,

tests were performed to validate that the closed loop system satisfied the design specifications in both the

frequency and the time domains. Two tests were performed in the frequency domain. For the first fre-

quency domain test, the ML contour was plotted on the NC along with an array of open loop MISO loop

transmissions (Li)i = gi(qii)t for row i of the MISO loops, one for each of the J plant cases

( I= 1, 2.... J ) to validate that the ML contour was not violated for row i of the MISO loops. If the

ML, contour was not violated, then it was concluded that the stability specifications had been met for row

i of the NTISO loops. As an example, a plot of the open loop transmissions for channel 1 of a controller

designed by Philip Arnold is shown in Fig. 4-29 on page 4-19.

For the second frequency domain test, an array of J Bode magnitude plots of each closed loop transfer

function element was plotted along with the performance tolerances to validate that the performance speci-

fications were satisfied in the frequency domain by the closed loop system. For each diagonal closed loop

transmission thi, the J Bode magnitude plots were plotted along with the upper and lower tracking bounds

aii and b1i. For each off-diagonal closed loop transmission tij, the J Bode magnitude plots are plotted along

with the upper bound b1j. The mxm closed loop transfer function matrix T, whose elements tij are the

transmissions plotted on the Bode plots, is formed based on the equation:

T = [I+PG-I PeGF (2-46)

where I is the identity matrix, and Pe, F. and G are the nmxm effective plant matrix, diagonal prefilter matrix.

and diagonal compensator matrix, respectively. These validation steps are important because they provide

a meth•d of' %alidation independent from the MISO CAD routines used, the choice of plant templates, and

the template border used.
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The next simulation performed in previous thesis work involved setting up a System-Build model using

MATRIXx and running a time domain simulation for each plant case. The results of these simulations

were then used to validate that the figures of merit specifications, such as settling time ts, time to peak

tp, rise time t,, and peak response MK were met. This simulation validated the robustness of the QFT

design.

For the final simulation, nonlinear dynamics such as saturation and hysteresis were included in the

System-Build model used in the time domain simulation. This simulation provided the most realistic

evaluation of real-world performance.

2.14 Summary

This chapter presented a general overview of the MIMO QFT design procedure as it applies the

development of the MIMO,'QFT CAD package. The plant models and design specifications upon which

the design is performed are introduced, along with a discussion of the tasks performed as the design proceeds

from prohlem setup. through design, to simulation and testing. The discussion now shifts to the imple-

mentation of the QFT design procedures for the purpose of developing the MIMO/QFT CAD package.
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3 Implementation

3.1 Introduction

This chapter presents a detailed discussion of the implementation ', the QFT control theory

presented in Chap. 2 and the development of the MIMO QFT CAD pack. Section 3.2 begins by

discussing the choice of programming environment. Sections 3.3 through 3.6 discuss the setup of the

control problem in preparation for the QFT design, including definition of plant models, sensor and actuator

dynamics, and sensor gain matrix. Sections 3.7 through 3.9 discuss the transformation of the MIMO

problem into a set of MISO equivalent problems. Section 3.10 discusses the implementation of the improved

method. Sections 3.11 through 3.16 discuss the implementation of the MISO QFT design procedures,

including definition of design specifications, generation of templates and bounds, and design of the com-

pensator and prefilter for each channel of the control system. Finally, Sec. 3.18 discusses simulation and

testing procedures implemented for the completed design.

3.2 Choice of Platform

Several platforms are considered for use in implementing the MIMO QFT CAD package. These

packages are considered on the basis of their capabilities, numeric precision, portability, and cost. The

packages considered include Matlab O, MATRIXx (20), Control-C (10), Mathematica (29), Macsyma (19),

and the 'C' language (26).

The 'C' language is considered first. The greatest strengths of the 'C' language, as compared with

the other alternatives, are the portability, availability, and increased speed gained by use of the compiler-

based 'C' language. Also, the availability of Eispack (6), LINPACK (7), and ICECAP-QFT (9) routines

as well as a numerical methods toolbox (23) for 'C' are helpful. The 'C' language also presents several

drawbacks. First, numerical precision of the language is limited to the machine precision, unless extended

by use of additional software. Second, the 'C' language. as a platform, does not offer an interactive mode.

Third, the language does not free the developer from the details of implementing and using advanced data

structures, such as a transfer function or a polynomial matrix. Finally. the 'C' language does not free the

developer from managing the storage of the large amount of CAD data (pointer management).



MATRIXx is now considered. This package is specialized for engineering and control applications,

with a variety of software tools available for solving control problems and has an interactive user interface.

This streneth comes at the expense of a number of weaknesses, however. First, numeric precision of all

calculations are limited to 16 decimal digits of accuracy. Second, the language itself has many limitations,

such as the 4096 character limit on the code used for a 'while' or a 'for' loop, and the lack of the logical

'and', 'or', and 'not' operators. Third, the types of data structures available are limited to those that can

be expressed using a two dimensional matrix. Fourth, the availability of this package is limited due to its

high price.

Matlab and Control-C are also considered. These packages, like MATRIXx, have a variety of tools

useful for control applications and an interactive front end. They also, however, share the limitation of 16

decimal digits of accuracy for all calculations. Therefore, Matlab and Control-C are placed in the same

categor-y as MLATRIXx.

Macsyma is also considered as a candidate. While this package is capable of working with and

performing calculations on symbolic expressions, it has difficulty solving for the roots of a polynomial.

Because this is a critical step in control system design, Macsyma is not considered further.

The rcmaining package considered is Mathematica. This package has many strengths. Its most dis-

tinguishing features include the use of symbolic arithmetic and the capability of performing calculations

using arbitrary precision assigned by the user. In addition, Mathematica is equipped with an interactive

user interface and an extensive, well refined, "free form" lan uage executed by the command interpreter.

This language allows for a wide variety of data structures of arbitrary size and dimension, including lists

of matrices, arrays of transfer functions, and expressions in any number of variables (29:Sec. 1.8). The

environment allows for selective hiding of information by use of local parameters, local variables, and local

contexts (29:Sec. 2.6). Finally, Mathematica has the advantage of making any application written for it

portable to many operating systems, including UNIX, VMS, and MS-DOS systems as well as the Macintosh.

The low cost of Mathematica also is advantageous, placing a low financial demand on potential users of
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the package. One weakness brought out in the review is that since Mathematica is not a compiler-based

language, it can be slow. This problem can be overcome, however, since the MathLink facility provided

with Mathematica allows a seamless interface to outside compiled software, including software written in

'C'. Another problem is the absence of control design tools offered by other packages such as Matlab and

MATRIXx. Many of these tools are developed in this thesis for use in the CAD package, including routines

for generating Bode and Nichols plots for a transfer function, and software for transforming a polynomial

between coefficient form and factored form. Henceforth the CAD package developed in this thesis is

referred to as MIMO/QFT CAD.

In making the final decision regarding the environment to be used, the numerical accuracy of the

packages is considered a critical issue. In particular, the ability of the packages to accurately represent a

high order polynomial in both coefficient and factored form is critical in MIMO QFT CAD design problems.

A test case is used to illustrate this need for numerical accuracy.

A 50th order polynomial is entered in factored form, with the following set of roots each having at

least 8 significant decimal digits of accuracy:

roots= (1.0123456, 2.0123456 ... , 50.0123456 } (3-1)

The factored form polynomial is expanded into coefficient form. The roots of the expanded polynomial

are then obtained and plotted. The roots obtained from the polynomial in coefficient form represented with

50 digits of precision. plotted in Fig. 3-1 using Mathematica, are a close representation of the roots of the

3-.3

........-.- , 1 11 z 11 iz"i

Fig. 3-I Root•s of high precision polynomial Fig. 3-2 Roots of standard precision polynomial
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original factored form polynomial. With a 16 digit of precision representation, however, the root locations

are displaced large distances from their original locations, shown as plotted by MATRIXx in Fig. 3-2.

The warping effect is accounted for by examining the polynomial in coefficient form expressed in

terms of the factored form coefficients from which it is obtained.

In factored form, let:

p(s) = (s + ri)(s + r2)(s + r3) ... (s + r,) (3-2)

Multiplying out the terms yields the coefficient form polynomial:

n

p(s) = sn+ (Eri)sn-I + ( rirj) sn-2 +'.

i=l i~j

n n

+ ( ]'1I rj ) s' + ( I- rj ) s0 (3-3)

i=i-j I i j=i-

Each coefficient can now be examined to determine the number of digits required to represent it without

error. Table 3-1 lists the number of digits required for each coefficient when using m digits of precision

for each root. Using even one digit of precision in the roots of the 50th order polynomial, in coefficient

form, in the example requires using 50 digits of precision to represent without rounding error the term

n

resulting from r- rj. Note also that in this case only I or 2 digits of precision could be used to represent.

n

wvithout rounding error, the term resulting from ri. The precision used for the roots in the example of
i.=l

n n n

Coefficient Y ri Y nrj E rI rj H rj
I i=1 i~j i=I i'tj j=I

Table 3-1 Coefficient form precision requirements
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Fig. 3-2 has m = 8 digits of precision and the machine precision is n = 16 digits. Therefore, the first

n n

two non-unity coefficients I ri and Z rirj are expressed without rounding error. The center of gravity
i=-- i~j

of the roots • r, therefore is not affected by rounding error. The product of roots, however, requiring

400 digits to be represented without rounding error is rounded to 16 digits of precision. For this example.

each rounded coefficient cn is represented by a precise value an plus an error term en:

n

cl = al + el = Y,1" rj-+ el (3-4)

i= 1 jvi

n

co = ao + oe = rH rj + eo (3-5)

j=i

In terms of the number of digits dropped, rounding error is most severe in the last term. The effect

of the rounding error eo is analogous to the effect of turning up the gain in a unity feedback system with

the polynomial as the denominator of the plant transfer function. This accounts for similarity between the

pattern of migration of the roots and the migration of roots on a root locus plot:

The closed loop transmission of the system in the block diagram of Fig. 3-3 is:

oe (3-6)
,n - an-isn- +...- + (a.0 + e0)

Clearl,, more than 16 digits of precision are needed to accurately represent the 50th order polynomial

in coefficient form. Mathematica is the only package in which higher precision math can be used to solve

this problem. The use of high precision math is most critical in the polynomial matrix inverse procedure,

+ eo
sn + n-Is'+- +a
sn+anlsn- +''+a

Fig. 3-3 Effect of largest error term
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discussed in Sec. 3.9, where it is used to accurately compute the small difference of large numbers encoun-

tered during the matrix inverse and to accurately represent factored form polynomials which result from

the matrix inverse.

A second feature critical to the development of the MIIMO/QFT CAD package to be used by future

thesis students is the availability of an interactive front end. No menu system can ever offer all the features

that will be needed for future projects. Allowing the designer to stop the design process to make modifi-

cations to the CAD memory variables or to perform calculations using the CAD memory variables, allows

any operations not performed inside the package to be handled outside the package using the Mathematica

command line interface or by use of user-developed Mathematica programs. An interactive front end is

available with MATRIXx, Matlab, Control-C, and Mathematica.

After considerin2 the merits of the packages considered, Mathematica is chosen as the platform for

the CAD package. This choice is motivated mainly by the numeric precision and symbolic capability

available with Mathematica. The shortfall on execution speed associated with the interpreted execution is

remedied by exporting computationally demanding tasks to 'C' subroutines, while the absence of control

to-xls is addressed by developing the needed resources and adding them to the Mathematica development

environment. These tools include a Nichols plot function, a Bode plot function, a generalized plot function,

and polynomial manipulation functions.

3.3 Loadig Plant Data

The first step in the design prcxess is definition of the control problem. Loading the plant data has,

in the past, been the most tedious and error-prone step in defining the problem. Automated loading of

plant data in contractor format is implemented to eliminate these difficulties. Formats currently supported

include:

* Genesis simulation format

"* MATRIXx stale space formal

"* Transfer function matrix loaded from memory
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. Transfer function matrix loaded from console

3.3.1 Plant Model Parameters

Often, each plant model has associated with it a unique set of parameters. In an aircraft flight control

problem, for example, each plant model may be associated with a particular flight condition. The flight

condition could be defined, for example, by the vehicle altitude, Mach number, angle of attack, and weight.

A distillation column, on the other hand, may have temperature and pressure as parameters.

The CAD package allows the designer to specify a set of parameters associated with the plant models.

The parameter name, a memory variable name, a typical value, and a description are entered for each

parameter. For example, the plant parameters for the Lambda URV are shown in Fig. 3-4 as listed by the

CAD package (18:3-2). The designer may then specify the values of these parameters along with a comment

to be stored along with each plant model when a plant model is loaded. An excerpt from a CAD package

listing of plant models for the Lambda URV is shown as an example in Fig. 3-5. Nineteen plants were

used to model the aircraft over the range of variation of the parameters shown in Fig. 3-4.

3.3.2 Structure of Plant Set Data

The set of plant matrices is stored in a list along with the associated plant parameter variable names

defined in Fig. 3-4, the plant parameter values, and a comment string. In the excerpt of the listing of plant

models in Fig. 3-5, four plant parameters, the associated values of the parameters, and a plant comment

Current List of Flight Condition Variables

Var:able Nominal Value Description

Xca 20 Center of gravity X-position (% of MAC)
U 100 Forward airspeed (kts)
q 15 Dynamic pressure (lbs/sq_ft)
W 200 Weight (ibs)

Fig. 3-4 Plant parameter listing
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are shown for the first three flight conditions of the Lambda URV as stored in the plant set data structure.

Each plant matrix is stored in the form of a transfer function matrix in s.

The plant list, a 4th order structure, is illustrated below using Mathematica syntax:

( ( commenti, { { paramni, vall ..... (paramm, valm, })}, plantl },

... {commentn, {(paramni, vail.}..... parammn,valm} ), plantn) } (3-7)

The form of the plant parameter list, a 2nd order structure, is illustrated below:

( { paramNamel, paramVarNamel, paramTypicall, paramDescripi },

{ paramNamep, paramVarNamep, paramTypicalp, paramDescripp } } (3-8)

Once a plant has been loaded the transfer function elements can be displayed in factored form or plotted

on a Bode plot. An example of the listing of the factored form transfer function of the (1,I) plant matrix

element for plant case I is shown in Fig. 3-6. A Bode plot of the transfer functions for all plant cases is

shown in Fie. 3-7. Alternatively, the Bode plot for any one of the plant cases could be plotted.

Current List of Plant Models

Plant Comments Parameter Value

SSLAT1 Xcg 21.8
U 110
q 35.05
W 181

#2 SSLAT2 Xcg 21.8
U 110
q 35.05
W 215

#3 SSLAT3 Xcg 21.8
U 110
q 40.08
W 181

Fie. 3-5 Plant model listing excerpt
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Plant Case: 1 Element: [1, 1]

Roots of Numerator Roots of Denominator

0 0.01410828486
-0.9516270805 + 3.844813704 I -0.9733554679 + 3.9181016 I
-0.9516270805 - 3.844813704 I -0.9733554679 - 3.9181016 I

-6.749157971

Fig. 3-6 Factored form transfer function

23.0351 •Contractor Plant Element (2. 2). All Plant Cases

-20

Frequency (rad/sec)-38.9732OoI 0.01 0.1 1. 1O. c1Oo.-91 .7979 3-

-135 M!.k

-225 . •
-270

-315

Frequny{als•:O
- 370.98`10-0• 

1 0. .10.100.

Fig. 3-7 Plant transfer function Bode plots
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3.4 Loading of Sensor and Actuator Models

Dynamics of the sensors and actuators are specified in the frequency domain in the form of LTI transfer

functions at the console in either coefficient or factored form. A unique L1I transfer function may be

specified for the actuator used to drive each contractor plant input and for the sensor used to measure each

plant output. The actuator transfer functions are stored as a list:

actdyn = i TAcT, , TACT2 . TACT2 1 (3-9)

The sensor transfer functions are also stored as a list:

sensdyn = • TSE.S, , TSENS 2 .... TSENSI } (3-10)

It is assumed that there is no uncertainty in the actuator and sensor models and that LTI models can

be used for the purposes of the QFT design. (If there is uncertainty then the actuators and sensors should

be merged with the plant.)

3.5 Dimension of Control Problem

The dimension m of the control problem is the number of outputs that are to be controlled by the QFT

controller. The dimension of the control problem determines the dimensions of the mxm square effective

plant natrix. prefilter matrix, and compensator matrix, and must be defined before defining the sensor gain

matrix, the weighting matrix, or the design specifications.

3.6 Sensor Gain Matrix

In some instances, a subset of plant outputs or a linear combination of plant outputs are to be controlled.

In these cases, the designer can specify the appropriate sensor gain matrix WSENS. A block diagram

illustrating the placement of the sensor gain matrix when forming the plant P is shown in Fig. 2-3.

An entry is accepted at the console for each matrix element, one element at a time, in the format of a

c(ctlcIlient tfon or factored form polynomial where the coefficients, poles, zeros, and gain can be constants

or anw function of plant parameters defined in Fig. 3-4. Constants may be entered as elements of the sensor

".Un mn.itrix \Vsl ,-sb> specifying transfer functions with no poles or zeros but with the desired gain. Each
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function entered for a transfer function is required to give a real number when evaluated at the 'typical

values" of the plant parameters. Each function entered for a pole or zero is required to give a real or a

complex number when evaluated at the "typical values" of the plant parameters. If complex, the pole or

zero is included hi the transfer function as a complex conjugate pair. If a pole, zero, coefficient, or a gain

gives a symbolic expression or cannot be evaluated, the designer is required to re-enter the expression.

The "typical values" are thus required for each plant parameter for the purpose of validating that the elements

of WSENS evaluate to gains or to transfer functions in s for the plant parameters of each plant case.

3.7 Weighting Matrix

A block diagram illustrating the insertion of the weighting matrix W to form the effective plant Pe is

shown in Fig. 2-4. The elements of W are defined by the designer in the same manner as for WSENS. The

weighting matrix must result in an effective plant Pe which is full rank and for which the diagonal elements

are the same sign for all plant cases as - It is also desirable that the determinant of the effective

plant be minimum-phase (1 7:Sec. 5-8). The first step in selecting the Ixm weighting matrix for an mxl

plant P with more inputs than outputs to be controlled (I inputs and m outputs) is application of the

Binet-Cauch. theorem to determine whether a minimum-phase plant can be achieved by a proper choice

of weighting matrix elements. By the Binet-Cauchy theorem, a sufficient condition for the existence of a

minimum-phase Pe is that the determinant of some mxm submatrix of the elements of P be minimum-phase

(17:5-19). If such a submatrix can be identified from the I ! - my) m! possible choices, then a minimum-

phase effectixe plant is achievable. The CAD package presents, for inspection, a set of plant inputs which

results in a minimum-phase P,. The designer then applies engineering judgment in choosing the weighting

matrix elements. The Weighting matrix selection procedure is an area of research in itself. For more

information, consult (15).

The CAD program stores the weighting matrix elements in a two dimensional matrix:
%An alrix = %%,11, 1, W1 1, •( - 1

V*12w ... .... iwwrnl . m, wi2. WMI (3-11)

3-11



3.8 Formation of Effective Plant Models
The effective plant transfer function matrices are formed, one for each plant case, after the weighting

matrix, actuators, sensors, and sensor gain matrix are defined. For each of the J plant cases, the weighting

matrix and sensor gain matrix, whose elements may be functions of plant parameters, are evaluated using

the plant parameter values associated with each plant model.

Therefore, for each plant case i:

Wi W(param1, param2,.., paramp)] ,- 2,= P-,v.,12 (3-12a)

] = p~mmvap

PI P"~ = Isrtr%\'' I

Nk,-sISEs, = IWSENS(paramI, param2,..- paran•p)] P-K=,-,.,. (3-12b)

I a = P ,,VA.p

The effective plant is then formed from its component parts:

P;, = Pi. Wi = (WSENS" TSENS. PCONT,-.TACT). Wi (3-13)

When the effective plant is formed, a common denominator is factored out of each of the components:

V'ESENS. TENS. PCONT. TACT, and W. The resulting effective plant P, is thus obtained in the form of a

numerator matrix P,_.m of transfer functions in s and a common denominator transfer function Ped., i.e...

_P =• m = pij` (3-14)

For each plant case I this equation is expressed as:

P= (Pe,,.)l = ýPj, (3-15)
(Peadl, l - I I

and where each element of Pe... is a polynomial in factored form.

B\ factorine out a common denominator, the numerical difficulty of the matrix inverse required to

form ( is reduced by requiring a polynomial matrix inverse rather than a transfer function matrix inverse.

Once a ei2httn2 matrix is chosen. the sign of the m diagonal elements of Pe must be checked as

oi-- - for all plant cases. The CAD package allows the sign of all plant cases to be examined for o.--
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in table form, as shown in Fig. 3-8. The sign of the effective plant elements can also be seen on the Bode

angle plot for each plant transfer function element, provided the plot reaches a sufficiently high frequency.

The default frequency range used by the CAD package is always sufficiently high.

Next, Pe must be checked to insure that it is full rank. The CAD package allows the designer to list

the determinant of Pe, one plant case at a time, as shown in Fig. 3-9. A non-zero determinant for each

plant case is indicative of full rank. The numerator of the determinant, because it becomes the numerator

Hiah Frequency Signs of Diagonal Transfer Functions

Plant Case Channel 1 Channel 2
#1 +
#2 +
#3 +
#4 +
#5 +
#6 +

Fig. 3-8 Listing of effective plant signs

.. inant of Effective Plant Matrix Plant Case: 1

cf Nu,.erator of Det(Pe] Roots of Denominator of Det[Pe]

0.01410828486

-2 -0.9733554679 + 3.9181016 I
-0.9733554679 - 3.9181016 I
-6.199628022
-6.749157886
-9. + 6.244997998 I
-9. - 6.244997998 I

-50.
-50.

Factored form gain multiplier: -2.4346665

Fig. 3-9 Listing of effective plant determinants
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of the equivalent plants qii, is examined since it determines the minimum- or non-minimum-phase character

of the system (17:5-11).

If any of the above criteria are found to be unacceptable, the weighting matrix is revised, Pe recomputed,

and the tests applied once again. This iterative procedure may be repeated until an acceptable weighting

matrix is obtained or the design process is aborted.

3.9 Inverse of Pe

Once a satisfactory weighting matrix is determined, and Pe is derived, the polynomial matrix inverse

can then be performed from which the effective plants qii are obtained. Recalling that the effective plant

is factored into a polNnomial numerator matrix and a common denominator; i.e..

Pe ~~Pe 0,ý (3-16)

The inverse is perfQrmed using the Mathematica Inverse function:

P- de PPedn' (3-17)

The cfcctive plants are then formed by inverting the elements pj:

detP j = -(3-18)
- - pij

Thc natrix elements are then tested to validate that the condition of diagonal dominance is satisfied:

(17:5-1)

1. For rn = 2, must satisfy for all plant cases as o--4- the equation:

IP1I P22 I > I p12p21 I (3-19)

2. For m - 3, must satisfy for all plant cases as o--4 the equation:

.. I hP2 p pt I P3P1- I +P12 P2*P3 I+ IP12 P3 P31I

+ 1P13 P2-2 p3t I+ I pP13 p21 P12 1  (3-20)
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Essentially, these tests validate that the sign of the determinant of Pe does not change over the plant

cases. If dia2onal dominance holds for all plant cases, then the first method design can be attempted. If,

however, diagonal dominance does not hold for a plant case, then the QFT Method 2 (improved method)

design must be attempted. If the results of this test are not satisfactory from the point of view of the

designer, then the choice of weighting matrix W is modified, and the Q matrix recomputed. Iterative

modification of the weighting matrix may be continued until a satisfactory Q matrix is obtained or until

the design is aborted.

Additional tools for examining the effective plants qii of the Q matrix set include a Bode plot function

., a transfer function display subroutine. The B3ode plot for a Q matrix element can be displayed for a

specified plant case or for all plant cases together. Also, the CAD package allows the Q matrix transfer

function elements to be displayed in factored form for any selected plant case. The Bode plot for the entire

plant set is particu'arly useful for displu,"1g the variation in effective plant transmission as an aid in

selecting template frequencies.

Before the effective plants qij are used for controller design, however, it is best ,o cancel equal or

ncarly _qual pole-zero pairs from all Q matrix transfer functions. In general, transfer functions of the Q

matrix returned by the polynomial matrix inverse procedure are high order compared to those of the effective

plant P, from which they are computed.

The CAD package has a function which performs automatic cancellation, canceling pole-zero pairs

based on a user specified ratio of the distance between the pole-zero pair to the distance of the zero from

the origin:

I Spole - Szero
ratio > (3-21)

Since pole-zero pairs are cancelled in both the right-half and left-half planes, the designer must be sure

to select a ratio small enough such that only nearly identical RHP pole-zero pairs introduced by the

polynomial matrix inverse procedure are cancelled. Physically meaningful RIP pole-zero pairs must not

be cancelled.
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3.10 Appl)dng the Improved Method

The improved method (QFT Method 2) can be applied for a 2x2 MIMO system using the MIMO QFT

CAD package once one of the two loop transmissions has been designed. The improved method imple-

mentation uses Eqs. (2-16), (2-17), and (2-18) to form a new set of effective plants. An improved method

plant is generated for each plant case, replacing the effective plant obtained from the polynomial matrix

inverse procedure. Once the effective plants are replaced by the improved method effective plants, the

desijn procedure for QFT Method 2 proceeds in the same manner as for a QFT Method 1 design. The

designer proceeds with generating templates and bounds on the NC, and designs the compensator and

prefilter based on the improved method effective plants.

3.11 Templates

Before the plant templates are generated, the CAD package requires the designer to specify the template

frequencies. The specified frequencies are stored in a list:

flist = freqi, frec2 .... freqn i (3-22)

Plant templates are generated, one for each template frequency, to outline the range of uncertainty in

the transmission of the effective plant qii (or the effective plant qiie when the improved method is used).

Sevcral steps are required to generate a template. First, the log magnitude and angle in degrees are evaluated

for each of the plant cases and are placed in a list of template point locations. Next, the magnitude and

angle of the center of the distribution of plant cases on the NC is calculated:

I
M.= - (3-23)

i=lI
J

The polar angle of each plant case with respect to the center of the distribution is then calculated, and

the list of J plant cases sorted based on the polar angle. A set of line segments are now drawn around the
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outline without zig-zagging back and forth across the template. For the final step, all plant cases which

can be enclosed in the interior of the template by a line segment connecting the two adjacent template

points are dropped from the outline. This procedure is analogous to placing a rubber band around a set of

nails, representing the template points, and retaining only the outermost plant points grabbed by the rubber

band. For a more detailed discussion of the procedure for generating the convex template outline, with all

interior angles less than 1800, see (1:43).

Formation of a convex template outline is but one approach to generating a template. An alternative

approach used by Yaniv (22), the grid method, generates an array of plant points over the range of variation

of plant transfer function parameters. This approach was not chosen for the MIIMO/QFT CAD package

due to the fact that the ranges of variation of plant transfer function parameters and correlation among plant

transfer function parameters which vary is unknown in many control problems. In aircraft flight control

problems, for example, unstructured uncertainty in the plant matrix is not easily modeled in terms of

variation of plant transfer function parameters. Only a set of representative plant matrices may be available

over the range of uncertainty of the aircraft. In addition to grid method another alternative approach was

de\eloped by Bailey (4) but was not used for the NMMO/QFT CAD package because it also requires the

range and correlation of variation of plant transfer function parameters be known. Formation of the convex

template outline is therefore used to generate templates for the MIMO/QFT CAD package.

3.12 Choice of Nominal Plant

In addition to generating the templates, a nominal plant transmission is chosen. In general the nominal

plant need not be chosen from the set of plant cases. For an analog QFT design, however, the package

requires the designer to choose from the set of J effective plants. While any plant case can be chosen as

the nominal, an accepted practice is to select the plant case at the lower left corner of the templates whenever

possible.

The package allows the designer to display a plot of the numbered plant cases for a user specified

template frequency. The designer chooses a nominal plant from the set of plant cases. A chart of the
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templates is then displayed with the nominal point emphasized, as shown in Fig. 3-10. If the choice of

nominal point is not satisfactory, another nominal point may be selected.

Once a nominal plant case is chosen, the template is shifted such that the nominal plant case is located

at (0deg,0dB) on the NC:

Mi Mi - Mnominal for all i in J (3-25a)

(Pi (Pi - (Pnorninal for all i in J (3-25b)

This can be done because only the location of the plants relative to each other is of importance when

generatig bounds. The template can then be shifted on the NC such that the nominal plant is at a desired

location simply by adding the coordinates of the desired location to all plant cases. In this way, the template

can be conveniently placed at any desired location on the NC.

3.13 Specifications
The design specifications must be defined before bounds are generated and any compensator or prefilter

elements are designed. Specifications for gamma bounds are optional, and may be defined when using the

improved method.

db

200 oS
150

100

"--4

w-B '-20 w-50

100 200 3 400 50o 600
der~ee

Fig. 3-10 Templates with nominal point emphasized
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3.13.1 Stability Specifications

A stability margin must be specified for each row of MISO loops. As discussed in Sec. 2.5.2, the

CAD package allows the stability margin to be specified in terms of the gain margin gm, the phase margin

angle y, or the corresponding ML contour. Any one of these three specifications can be determined from

any of the others. This is illustrated graphically on the NC shown in Fig. 2-10. Only the ML contour

stability specification is stored in memory.

If gm or y are given, then ML in dB can be computed using the equations:

ML = 20 loglo( / 1 1 (3-26)(T -cos2('--180°)

ML = 20 logi09 10-/20, (3-27)

F+ 1 0&D/20)
Conversely, if ML is given in decibels:

gm - (3-28)

,Y 180' -cos- 1(11 - -N (3-29)

where the closed loop magnitude associated with the ML contour is:

Mm = l0o(M/2°) (3-30)

Equations (3-26) and (3-29) are derived in Sec. 3.14.1 in which plotting of stability bounds is discussed.

3.13.2 Performance Specifications

Performance tolerances must be defined for each input-output response relationship. These tolerances

are specified in the frequency domain, and are defined in transfer function form at the console. An array

of Bode magnitude plots can then be plotted for the performance tolerances. The transfer functions are

then stored, as entered, using the following structure:
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pspecs= { {biI,alI },...-,{bm }},

{{ bmi} .... (bmm, amm }} } (3-31)

3.13.3 Gamma Bound Specifications

The gamma specifications are optional, and may be defined when using the improved method. Gamma

bounds provide insight into the loop shaping procedure which allows the designer to avoid unnecessarily

introducing new right-half-plane poles into the equivalent plants of remaining channels. Placing additional

restrictions on the compensator currently being designed may substantially reduce the difficulty of perform-

ance bounds on loop transmissions yet to be designed. The improved method requires the derivation of

the effective q plant transfer function, i.e. for a 2x2 system in which the compensator for channel 1 has

been designed:

_q22 (1+LI )
q22e - (3-32)1 -'Y12 + LI

By proper design of the compensator gi, new RHP poles are not introduced in q22e. In order to plot

the gamma bound for channel 1, a minimum value is specified for the magnitude of the denominator of

Eq. (3-32).

My, !5 11-12 + Li1i (3-33)

For the case in which the compensator for channel 2 is designed first, the requirement on channel 2

is:

Mr. < 11 -r21 + L21I (3-34)

For a 2x2 system 712 and y2i are defined as:

712 p= P12 P21 (3-35)
PII P22

The minimum value for each channel is stored in a list of the form:

gspecs = ý gspec• .... , gspec% ý (3-36)

At the present time, the CAD package can generate gamma bounds only for a 2x2 MIMO problem.
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3.14 Generating Bounds

This section provides a detailed discussion of the methods used by the MIMO/QFT CAD package to

generate stability, disturbance, gamma, and tracking bounds plotted on the NC. Methods for generating

bounds have also been developed by during previous research efforts. Those interested in alternative

approaches to generating bounds may consult Cole (9) and Bailey (4).

3.14.1 Stability Bounds

A stability bound is plotted for each template. Stability bounds constrain the maximum closed-loop

transmission with unity gain prefilter to have a bounded magnitude:

gi (qii) 5< ML for I= 1, 2,.... J (3-37)
1 + gj(qij)i 

(
The bound is plotted for a given frequency by plotting the path of the nominal point while traversing

the ML contour with the template generated for that frequency tangent to the ML contour at all times. To

do this, the software must be able to determine the point of tangency on the outline of the template and

the location of the template, when tangent to the ML contour at that point, as the ML contour is traversed.

To accomplish this task, an equation is derived which gives the NC magnitude M to which a template point

at the NC phase angle p must be shifted to be in contact with the ML contour (13). The use of this equation

to plot points on the stability bound is then discussed.

For a given point along the outline of the template, at a given angle (p on the NC, an equation can be

derived for the open loop transmission magnitude M required for this point to be in contact with the ML

contour (13). The derivation begins with the requirement that the magnitude of the closed loop transmission

be equal to the magnitude Mm associated with the ML contour for the open loop transmission L where

Mm = 1 ON'1/20 and ML is given in decibels:

I+L (3-39)

Taking the magnitude of the numerator and denominator, with L = M e&p yields:
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MM M
Mm =M

I l + Mcos(p) + jMsin(p) I

1(I +i M COS(.(P)) 2 + (M Sin(p) 3

Squaring both sides and multiplying both sides by the denominator yields:

MM2 [(1 I+McoS(w) )2+ (M Sin(w) )2] = M2  (3-40)

Multiplying out the left side and using the identity Sin12(4)) + C)52(rp = 1 yields:

m~ 12 M cos(pD) + M2 12sin2(9)] M2  (3-41)
M=M

2=(M3-391

Squbtacting Mfrmboth sides and multiplying out iesb therdnmisto yields aqartceutonM

M -• cos([ + ) cosM(o )+ 4 M sin(c ) 1 - M(3 -43)

2M

-- CS() - CO2(CO) -- (1-Vm2
=cs9 ±VO (3-43)

In addition, an equation must be derived for the range of angles for which real solutions for Eq. (3-43)

exist. This range is then used to determine the range of angles over which the stability bound exists. A

real solution for Eq. (3-43) exists when:

cos2((P)-(1- M) > 0 (3-44)

The equation below can be solved for the angles which bound the range of real solutions:

cos (9) - (1 -M ) = 0 (3-45'

The solution to this equation, for a given Mm, yields two values for cos(c0), thus rearranging and taking

the sauare root of both qide-:

cos(g) =+ 1-m (3-46)
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The solution with the negative sign is chosen since the ML contour exists for some range of phase

angles between -270' and -90* on the NC, in which cos(p) is negative:

COS() = - ;_1 --M Ir? (3-47)

Since cos(9) = cos(-(p) taking the inverse cosine yields two solutions for 4:

S= ±cos-I (-I ZK2) (3-48)

The two solutions for 9 bound the range of angles over which the ML contour exists on the NC once

reflected into the (-3600,00) angle range by adding ± k 3600 where k is an integer. The inverse cosine

function in Mathematica, however, returns only one of these two solutions, an angle between 00 and

+180', which is:

4P = +cos-- 1-m (3-49)

The angle range for which the MI, contour exists, therefore, is:

NMm. < 9< !5MNmmM. (3-50)

Where:

9PMm,,i = +COS- 1 -- IM )-3600 (3-51a)

9Mmr,,, = -coS- 1 (- 1 2i (3-51b)

Equation (3-51b), which gives the phase angle of the right edge of the ML contour, is used to derive

an expression for the phase margin angle y associated with the ML contour. Using the fact that

y= 180' + (Mp..,, where -180' <9Mm,, < -90W as seen in Fig. 2-10 on page 2-8:

y= 180°-cos-'( 1-Ma (3-52)

Solving Eq. (3-52) for Mm and using the fact that ML = 20 logio(Mm) yields an expression for the

ML contour associated with the phase margin stability specification y:

ML = 20logi l (3-53)
"1cos2(318 -2)
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Equations (3-52) and (3-53) are given as Eqs. (3-29) and (3-26) respectively in Sec. 3.12.1 which lists

the equations used by the CAD package to convert among the various stability specifications. The appli-

cation of Eqs. (3-43) and (3-50) to plotting the stability bound is now discussed.

A template with the nominal point at a fixed NC angle, when tangent to the ML contour, can be tangent

at only one point on the outline of the template. Because the point of tangency is unknown a-priori, Eq.

(3-43) for M cannot be used directly to determine the position at which the template is tangent to the

ML contour. Equation (3-43) is used, however, to search for the point of tangency. The location of the

points of tangency on the template when tangent above and tangent below the ML contour are addressed

separately.

To locate the point of tangency above the ML contour, the entire outline of the template is searched.

The point on the template which requires the largest open loop gain to bring the template into contact with

the ML contour is the point of tangency, as illustrated in Fig. 3-11. Note that any increase in open loop

gain causes the template to loose contact with the ML contour. The search routine, by applying Eq. (3-43)

around the outline of the template, locates this point of tangency by searching for the point which requires

the largest M to contact the ML contour.

Before the CAD package begins the search, the range of angles in Eq. (3-50) over which the ML

contour exists is calculated using Eqs. (3-51a) and (3-51b). This range is used first to calculate the range

of angles over which the stability contour exists, and second, to eliminate from the search any portion of

the outline of the template which is to the right or left of the ML contour on the NC and therefore cannot

Template

Point of tangency ML contour

Nominal point

Fig. 3-11 Upper point of tangency with stability bound
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come into contact with it by moving the template up or down. The range of angles occupied by the stability

contour is calculated as follows:

(PSBmax = (PMmrnrax- 9PTEMPLATEmn (3-54a)

(PSBwin (PMm.nm - 9PTEMPLATEr.mJ (3-54b)

The angles (PTEMPLATI", m and (WrEMPLATE-.S are illustrated on the template shown in Fig. 3-12 and

the angles PSBED, 9SB.•,., PMmnw and (PMm., are illustrated on the NC in Fig. 3-13. The stability bound

is then plotted, beginning with an angle just less than 4PSB.,, in two degree intervals, until the end of the

stability bound angle range (PSBi is reached. A graphical illustration of the stability bound angle range

is shown in Fig. 3-13.

The maximum value of M is found by applying a binary search to each line segment of the template

outline, one at a time, and retaining the overall maximum value found. An 8 iteration binary search is

performed on each line segment by applying Eq. (3-43) at 8 test points along the segment. The final test

point of the 8 iteration binary search comes to within 1/512 of the segment length of the true location of

the maximum M. An 8 iteration binary search was selected so the search would come to within less than

one degree of the true location of the maximum M even for a template segment which traverses 3600 of

the NC. The greater of the values of M obtained at the indexed endpoint of the segment and at the last

test point of the binary search is taken to be the maximum value for M over the entire segment. For more

information on binary search, see reference (28).

I ML contour Nominal point

Mnom 0

I IrI

'PTEMPLATF inm 9TEMPLATEu (PSB.'in (Mm.rain 4mM max {PSB93
'Pnom m- 0

Fig. 3-12 Template quantities of interest Fig. 3-13 Stability bound range
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During the binary search, Eq. (3-43) is applied at test points on each template segment. The following

discussion illustrates the method by which this is done, using as an example the arbitrary test point

(9t, Mt) located on a template segment as shown in Fig. 3-14. Recall that the template is shifted such that

the nominal point is at ((Pnoni, Mnom) = (0, 0) as shown in Fig. 3-14. It is the shifted template that is

available in memory when generating the stability bound. For a stability bound point at angle 9SB on the

NC, see Fig. 3-15, the search iteration shifts the template such that the nominal point is located at

((PSB, MSB,). The value MSB, is the NC magnitude to which the nominal must be shifted for the test point

to be in contact with the upper portion of the ML contour (see Fig. 3-15). The test point is shifted along

with the nominal point to ((Pt + (PSB, Mt + MSBI). The location to which the test point is shifted can then

be calculated by applying Eq. (3-43) with (p = pt + (PSB. Two solutions are returned for the open loop

transmission magnitude NI required at the test point to be in contact with the ML contour. The larger

solution for M is taken, where M = MI + MSB, since the template must be in contact with the upper portion

of the Mi, contour during this search. The location to which the nominal point must be shifted, the quantity

the search seeks to maximize, is then calculated from:

MsB, = \ - Mt (3-55)

Template

Test Point

Mt ((Pt,Mt) •

Mnom -- 0

/\
/ (qPSB, MSB,) (tIPt'SB, Mt+MSB,)9'norn = 0  

(Pt

Fig. 3-14 Test point on template Fig. 3-15 Stability bound search test point on NC
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If the test point happens to be the point of tangency, having the maximum possible MsB, associated

with it, then MSB = MSB, is achieved and a stability bound point is plotted at (q)SB, MSB).

To locate the point of tangency at which the template is tangent to and below the ML contour, the

entire outline of the template is searched again. The point on the template which requires the lowest open

loop gain to bring the template into contact with the ML contour at that point is the point of tangency, as

illustrated in Fig. 3-16. The search routine, by applying Eq. (3-43) around the outline of the template,

locates this point of tangency by searching for the minimum value of M. The search routine is performed

using exactly the same procedure as that used to locate a point on the upper stability bound contour, except

that a minimum value of MSB, is determined.

3.14.2 Disturbance Bounds

Disturbance bound are plotted for each template, one for each off-diagonal MISO loop in row i of the

MISO loops for which the compensator is designed. By satisfying the disturbance bound on the NC the

open loop transmission Li obeys the constraint at each template frequency:

q]ii
ltijl Idijl 1 +Li < bij for i*j (3-56)

where:

dij - t• kj (3-57)
qik

ML contour _( •"

NomiaI~mplae •• •X Point of tangency

Nominal point

Fig. 3-16 L_,wer point of tangency with stability bound
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The specifications and the plant uncertainty dictate the magnitude of the disturbance ldijl. This upper

bound on the maximum disturbance magnitude for each plant case I in the set of J plants is given by:

(Idjlmi)z = kl (3-58)
iqiki!

k-i

The most extreme upper bound on Idijl for all the J plant cases is then:

Idijlmax = [ ( Idijimax )l ]max over1 (3-59)

Based on Eqs. (3-56) and (3-59) a lower bound is placed on I 1 + Li I, i.e.:

I 1 + I ŽI > Idijlmax lqiilbij(3-0

By making the substitution Li = - as in Sec. 2.10.2, the above equation is transformed such that

bounds can be plotted on the inverse NC. Thus, Eq. (2-24) is repeated below:

1 + M Iqiil Idij~max (3-61)

Simplifying by using the symbol MD to designate the inverse NC constant magnitude contour:

m < MD where MD _ qii (3-62)
1 + M 1qjj1 Idijimax

In generai, MD is different for different plant cases since qii is different for different plant cases.

Equation (3-62) can be utilized to determine the disturbance bounds for m as shown in Fig. 3-17. Since

constant M contour, D > I template MD contour, MD < 1

0dB 0 dB3

'inverse' template

0dB 0 dB

constant M contour. MD<I MD contour. MD>I

Fig. 3-17 Standard Nichols chart Fig. 3-18 Inverse Nichols chart
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the disturbance bounds are desired for Lio then from this point forward the inverse NC is utilized whose

constant magnitude contour is referred to as the MD contour.

Equation (3-62) is used to plot bounds on Lio on the inverse NC as shown in Fig. 3-18. To accomplish

this task, an equation is derived which gives the location of the constant magnitude contour in dB on the

inverse NC for a specified phase angle of Lio and value of MD (13). Based on the equation for the location

of the constant magnitude contour, a search is implemented to locate the template point on the outline of

the template for which the most extreme disturbance bound point results. The quantity MD is re-evaluated

based on qi for each template point examined by the search ri)utine. The search algorithm therefore takes

into account correlation between the right-hand-side and left-hand-side of Eq. (3-61) due to correlation

1 1
between qii and mn-= I qI

Li -giqii"

Tlw, algorithm used to search the template outline when plotting disturbance bounds is identical to that

used used when plotting stability bounds. However, for a given point along the outline of the template, at

a given angle on the NC, a different equation is used to determine the open loop transmission mamitude

required for the test point to be in contact with the MD) contour of the inverse NC.

The first equation derived gives the location of the constant magnitude contour in dB on the inverse

NC for a specified value of MD and phase angle of m (13). The derivation begins with the requirement

on rnr

M1+ M< (3-63)

Taking the magitude of the left-hand-side, with m = Minv ePnv yieds:

MI) Minv

I = + Minm cos(in, ) + jMAnv sin(pj,,,,)

Minv (3-64)

= [1 + Min, c's((Pinv) I2 + [ Minv sin(pinv) 2(

Squaring both sides and multiplying both sides by the denominator yields:
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MbL I + Minv COS((Winv) )2 +( Minv sin(inv) Mv (3-65)

Multiplying out the left-hand-side, and substituting sin2((P) + cos2(9) = I yields:

M [1 +2 Minv COs((Pinv)+ Mv Sin2((Pinv)] =M (3-66)

Subtracting M,2n from both sides and multiplying out terms yields a quadratic equation in Min,:

(M - 1 ) M2nv + f 2 MD cos(pinv) ] Minv + M•3 = 0 (3-67)

The solutions to the quadratic equation is now written as:

-2 COS((inv) M6 ± "1 4 COS2Q(Pinv) Mý - 4 MD (M6 - 1)

2 (Mý - 1)

-cos(gjnv) ± Vcos2(9inv) - 0 - M ) (3-68)
(1 2

Note, however, that this requirement applies to m = (giqii)-1  not to L = giqii, as desired. By making

the substitution M = rM-d,, and (p = -9i,, the solution is now written to apply to giqii, where

giqii = me'q

M (3-69)
-COS((P) Cos 2 S())0 - MD)

Two cases are now considered: those for which MD > 1, and those for which MD < 1.

For the case of MD < 1, one solution to Eq. (3-69) exists for a template point at the NC phase angle

(p corresponding to the NC magnitude required for the template point to contact the MD contc:.i which

runs across the NC. A disturbance bound generated using an MD contour with MD < 1 is an open contour

running across the entire angle range of the NC. Choosing the positive sign in the denominator of Eq.

(3-69) results in a positive gain M, which is the desired solution:

M= for MD < 1 (3-70)
-cos(9) + I/cO(9) -0( - MD32)
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For the case of MD > 1, two solutions exist over a limited range of angles on the NC. I his case is

analogous to the pair of solutions obtained when using Eq. (3-43) to plot stability bounds. The derivation

of the range of angles for which the solution exists is carried out using exactly the same steps used to

obtain the range for the ML contour, given by Eqs. (3-50) and (3-51). The range derived for the MD

contour is shown below:

(PD.D ( q - ()D. (3-71)

Where:

Dý = +COS__ I 1 - M-D2- 3600 (3-72a)

PD..m, = -- cos-(-CS I 1 -- MB (3-72b)

A disturbance bound generated using an MD contour, with MD > 1, is a closed contour on the NC.

Both solutions of Eq. (3-69) for M exist provided the angle lies in the range of the MD contour

M 0 -Mrj for MD > 1 (3-73)
-cos(9) V cos2(() - ( - Mb)

The case of MD = I is not considered, since a small value can be subtracted from MD allowing it to

be handled as if MD< I.

3.14.3 Gamma Bounds

Gamma bounds are generated based on Eq. (3-74), one for each template, and one for each row of

MISO klops, other than the current row. yet to be designed (13). Recall that it is desired that the denomi-

nator of the effective plant, to be calculated by applying the improved method, not become smaller than a

specified minimum value despite plant uncertainty, i.e.:

I + giqii - ,j I 2! k (3-74)

Equation (3-74) is the requirement associated with row j of the MISO loops when gamma bounds on

L. are generated. The constraint this inequality places on the open loop transmission Li = &qii = M e3" is

illustrate(] ,on the plxKar plots shown in Figs. 3-19 and 3-20. The polar plots illustrate vector addition of
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the quantities 1-•,ii and several Li vectors along with a circle of radius k centered at the origin. The circle

bounds the forbidden region which must not enclose the vector sum 1 + giqij -'Yij.

In Fig. 3-19, the case for which a closed gamma bound is generated, it can be seen that for a limited

range of phase angles W5a-<5<Pb a range of unacceptable transmission magnitudes

Ma@() !5 M 5 Mb(9) places the vector sum 1 -,ij + Me)9 inside the forbidden region. The corresponding

locus of L = M d for which the circle of radius k is violated is enclosed by the closed gamma bound

on the NC in Fig. 3-21. An equation for Ma(q) and Mb(9) is derived in this section (13).

In Fig. 3-20, the case for which a gamma bound exists across the NC, it can be seen that for a range

of unacceptable transmission magnitudes 0 ! M 5 Mb(P) at a given phase angle t for which the vector

L = Me• enters the forbidden region of the polar plot. For each phase angle y, the transmission magnitude

M must be large enough that the vector sum 1 - yj + Med reaches outside the forbidden region on the polar

plot. For this case an open gamma bound exists on the NC shown in Fig. 3-22 bounding from above the

locus of unacceptable transmission magnitudes. An equation for Mb(P) is derived in this section (13).

Fig. 3-19 Closed gamma bound vector sum Fig. 3-20 Open gamma bound vector sum
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The examples in Figs. 3-19 and 3-20 illustrate the process by which a gamma bound is generated for

a single plant transmission. This process is now extended to address the fact that a region of plant

uncertainty exists as defined by the template. Initially, it is assumed that gamma is fixed. The process of

computing gamma bounds is then generalized to account for the fact that gamma varies among the plant

cases.

Assuming for a moment that ,j is fixed, the range limits of the transmission magnitude Ma(9p) and

Mb(p) are derived in terms of the transmission phase angle p beginning with the inequality:

I I -'y,• + giqii I >! k (3-75)

The bound on giqii exists where the inequality is about to be violated:

I I -"/•j + gjqii I = k (3-76)

Substituting I - Tj = a I +jCt2 and giqjj = Mej yields:

I atE +ja2 + M [cos((p) + jsin(g)] I = k (3-77)

Taking the magnitude and squaring both sides:

[EI+M cos(q')] 2 + [ct2 + M sin((p)] 2 = k2 (3-78)

Multiplying out the equation and collecting like terms in M yields the quadratic equation:

40 dB
40 dBT

0~~ ~ d-' OdB -

0dB-

' -40 dB 1 -4I
-40 dB - I I I -360' -270' -180* -90* 0'

-360' -270' -180* -90' 0*

Fig. 3-21 Closed Gamma Bound on NC Fig. 3-22 Open Gamma Bound on NC
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[(Et cos((P) + Ct2 sin(y)] M + (al + a-k 2 ) = 0 (3-79)

Solving the quadratic equation for M yields the range limits Ma(q) and Mb(P):

Ma((P) = -[tl coS((p) + E2 Sin(9)]

-- I [a COS(p) + a2 sin(g)]2 
- I (a + ai - k2) (3-80a)

Mb(p) =- [(at cosp) + 0.2 sin((P)]

+ Vt [CE cos(p) + a2 sin(9)] 2 - (aC + af - k2) (3-80a)

Solutions exist for angles at which the discriminant is non-negative:

[al cos(p) + C2 sin(p)] 2 - (,tl 2 2 _ k2 ) > 0 (3-81)

Since this transcendental equation cannot be solved for p, an iterative search is used to determine the

range for which solutions exist.

Refer to Fig. 3-23 during the following discussion. The vector L = MeP, provided it has a sufficiently

large magitude M > MI, is tangent to the circle of radius k at point B when the angle between the vector

Me?• and the radius vector drawn to point B is 90'. This fact is used by a binary search which searches

the outline of the circle of radius k to locate the point of tangency at point B. Once the point of tangency

M, e", A

k MB

Fig. 3-23 Closed gamma bound quantities of interest Fig. 3-24 Open gamma bound quantities of interest
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is located, basic geometry is applied to calculate 91 and 9p2-. The implementation of the binary search and

the method by which 9p1 and qP2 are calculated are now discussed.

Let:

CEI + jC2 = 1 - Yj (3-82)

The coordinates of point A on the polar plot are:

Ax = ca (3-83a)

Ay = C(2 (3-83b)

The polar angle of the vector OA is:

TP = arg( a I+ja2 ) (3-84)

Given a trial polar angle (DI of the vector OB, the coordinates of B are computed:

B, = kcos(Ft) (3-85a)

By = k sin(4t) (3-85b)

The polar angle 9p1 of vector AB, the first angle needed to compute the angle range of the gamma

bound, is given by:

arg[ (B. -A) +j(By - Ay)] (3-86)

The angle 9P2, the second angle needed, is now computed from (pi using basic geometry. The fact that

the sum of interior angles of a triangle is 180' yields the equation:

(tt- 01 ) + (pi) + (180 0 - T + 9 1 ) = 180 (3-87)

where T, (D 1, p1, and (p1 are angles shown in Fig. 3-23. Solving for pi yields the angle at B between the

radius vector OB and the open loop transmission vector AB:

PI = (1- (PI (3-88)

This is the angle which is 900 when point B is a point of tangency. The binary search, using 15

iterations, locates the angle DiI for which pi = 90° to within 45.2-15 degrees.
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Recognizing that the triangles AOC and AOB are similar triangles, the angles AOC and AOB are taken

to be equal. Therefore 02 is computed directly without iteration:

S- T = T - 0 1 (3-89)

Solving for D. yields:

S= 2T - 01 (3-90)

The coordinates of C are then computed:

Cx = k cos(02) (3-91 a)

Cy = k sin(€,) (3-91b)

Followed by the angle (P2:

(P2 = arg[ (Cx-Ax) +j(Cy-Ay) 1 (3-92)

The angles p1 and 92 are then shifted into the range (-360, 0°) by adding integer multiples of

±3600 as needed. The range is initially taken to be:

(PC, , 9,pG.) [min((p1.(2), max(9l,P2) ] (3-93)

The range of angles is then checked to be sure ýDG,, - (pGj < 1800 as required by inspection for

any point outside the circle of radius k on the polar plot. If this inequality does not hold, then the angle

range should include the 00 (or the 360*) point; the order of the angle limits are reversed. The reversal is

corrected by adding 360' to what is improperly taken to be the minimum angle in the angle range, making

it the maximum angle and including 00 in the angle range:

( (pG., (Pc, ) = [ max(p1,92)D, min((P1,(P2)+360 0 ] (3-94)

Using Eqs. (3-80a) and (3-80b) along with the algorithm for determining q)Gmia and 9pG.w, the mecha-

nism now exists for plotting the gamma bound on the NC using the existing template outline search routines.

When plotting a gamma bound on the NC the range of angles over which the gamma bound is plotted,

as shown in Fig. 3-26, is calculated analogous to the angle range of the stability bound:

9GB,., = 9G,.. - (PTEMPLATE., (3-95a)
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(PGBmin = (PG,, - (PTEMPLAT-,,a (3-95b)

Let a test point on the outline of the template be located at ((pt, MK) and the template nominal located at

(0, 0), as shown in Fig. 3-25. When using the template to plot a point on the gamma bound, the template

must be shifted such that the nominal point is located at the angle 9GB at which the point on the bound is

to be plotted. The test point, shifted along with the template, is shifted to the NC angle:

(P = 9Pt + (PGB (3-96)

For the case of I1-'yI > k two points are plotted on the gamma bound at each NC angle 9GB at which

the gamma bound is plotted. Equations (3-80a) and (3-80b) are applied with (P = (pt + (PGB to determine

the limits M.((p) and Mb((P) on the transmission magnitude M at the test point. These limits are then related

back to the nominal point:

MGB, = M-Mt (3-97)

The most restrictive limits on the nominal open loop transmission magnitude, the NC magnitudes at

which the points on the gamma bound are plotted at 9 = 9POB, are found by searching the template outline

for the test points which result in the most restrictive values of MGB,. Using this procedure, the gamma

bound is plotted on the NC across the range of angles for which it exists.

40 dB
Test Point

Mt(PtMt) 0dB-

Mno 
(PGB

-40 I I
(Pnomr (Pt -360 -270' -180' -90'

(PTEMPLATEM (PTEMPLATE.,

Fig. 3-25 Test point on template Fig. 3-26 Gamma bound angle range
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An additional consideration which must be taken into account is the fact that a different gamma exists

for each plant case. This variation is handled by the CAD package by generating a gamma bound for each

value of ;,j, one for each of the J plant cases. The value of yj is held constant when generating each gamma

bound. A composite bound is then formed from the set of J gamma bounds. The composite gamma bound

is plotted on the NC in place of the J gamma bounds from which it was formed. The method by which

a composite bound is formed is covered in Sec. 3.14.5.

3.14.4 Tracking Bounds

Tracking bounds are plotted across the NC using a procedure much different from those used to plot

the stability, disturbance, and gamma bounds. Tracking bounds are used to insure that the variation in

closed loop transmission tii of the diagonal MISO loop does not exceed the variation 8R permitted by the

performance specifications. The variation in the closed loop transmission results from both uncertainty in

the response due to tracking and from the presence of the disturbance input:

tii = tri + tdii (3-98)

where tr, and td,, are given by Eqs. (2-10a) and (2-10b).

As discussed in Sec. 2.10.2, a portion of the permitted variation SR of the total response tii is allocated

to the transmission due to disturbance t4 resulting in a reduced range of variation 8R' for the transmission

due to tracking tr,. By allocating the portion 2 Tn,, to disturbance, the permitted variation in closed loop

transmission t,, becomes ATr,', as shown by Fig. 2-17 and by the equation:

Arri' = Arr, - 2 "dý (3-99)

Once a portion of Air, has been allocated to distuibance, the following specifications given in Sec.

2.10.2 must be met by the transmissions tr, and td,, of the diagonal MISO loop, respectively:

aii' < I tr I < bii' (3-100)

1 td. I _< Td3 (3-101)
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The portion 2 Td. allocated to disturbance must now be determined. The normal procedure has been

to pick a trial value of rdi,, say 10% of the total permitted variation ATri. If for that value it is determined

that adequate allocation is made for disturbance, that is, the specifications in Eqs. (3-100) and (3-101) are

met at o = wi, then the value rTi is maintained fixed as the tracking bound is plotted across a range of

angles on the NC. Often, the same value of rTd is used at all 0i for which performance bounds are plotted

on the NC. In the MIMO/QFT CAD package, however, a unique optimized value of d,- is used at each

phase angle on the NC and at each (A for which a point on the tracking bound is plotted (13).

The CAD package optimizes Tdi, such that the restrictions on Li due to Eqs. (3-100) and (3-101) are

minimized. Based on the specification of Eq. (3-101) Eq. (3-60) is rewritten with i =j and bij = Td,, tO

obtain the disturbance requirement on Li for w =cj:

i+ ldlmax qiil (3-102)
lTd,'

Based on the specification of Eq. (3-100) the tracking requirement on Li is written:

Lm(TR,),)- Lm(TRr.) !5 8R' (3-103)

where 8R'= Lm(Arr,')= Lm(ATr,-2TJj) and where TRm_ and TR., are determined by maximizing and

minimizing the transmission with unity gain prefilter TR over the outline of the template:

TR Li (3-104)

with the template placed on the NC with the nominal point at the location of the nominal open loop

transmission Lio at c = cti.

The restrictions of Eqs. (3-102) and (3-103), which are functions of the choice of Tdi. are competing

restrictions. As Td. is decreased (increased), Eq. (3-102) becomes more (less) restrictive while Eq. (3-103)

becomes less (more) restrictive. Therefore. by choosing Td, such that Eqs. (3-102) and (3-103) place equally

restrictive limits on Li.e..BD,(jui(p) = BRj(.j~ip)= BBo,/joiW). the overall restriction due to both Eqs.
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(3-102) and (3-103) acting together is minimized. In general, the value of Tda is unique at each phase angle

and at each oi± for which tracking bounds are plotted. A disturbance bound is not plotted on the NC for

the diagonal NISO looI since the disturbance and tracking bounds are evaluated, using this procedure, to

be identical. The procedure for determining the optimal 2 Tda is now discussed.

In order to allocate for disturbance, a value for Tda is required. The CAD package determines Td,

indirectly, by first determining an allocation factor AF, which is the ratio of the range of variation allocated

to disturbance 2 Td. to the total range of variation AT,, = bii - aii. AF is therefore defined as:

2 T"d,
AF = (3-105)

bi - aii

Once a value for AF has been determined, T dil is calculated:

Td. = I AF Arri (3-106)
2

The required portion of ATr, can now be allocated to disturbance, yielding:

ATr,' = AMr, - 2 Td, (3-107)

Expressed in decibels:

6R' = Lm( Air,' ) (3-108)

Once 6 R' is determined, the location of a tracking bound (TB) point on the NC can be determined.

The template is placed on the NC such that the nominal point is at the NC phase angle P. at which the

point on the tracking bound is to be plotted. The template is then shifted up or down as needed such that

the required 6R' is obtained:

8R' = Lm( TR, )-Lm( TR.) (3-109)

where TR is the closed loop transmission with unity gain prefilter:

TR = + (3-110)
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The lc-ation of the nominal template point when Eq. (3-109) is satisfied is a point on the tracking

bound.

AF is optimized such that, when the open loop transmission at " is in contact with the tracking bound

point plotted for cj, the largest expected ltd,[l is equal to the amount Tda set aside for disturbance. For the

optimized AF, denoted AFopt, just the required portion of ATT• has been set aside for disturbance, no more,

no less. When AF= AFopt, Eqs. (3-102) and (3-103) are both satisfied as equalities, as desired. The

optimized value of AF is valid only at a specific GA and for a tracking bound (TB) point at a specific phase

angle q on the NC. The iterative method by which the MIMO/QFT CAD package determines AFop, is

now discussed, as it applies to the plotting of a TB point for (0 = ciL at the phase angle r on the NC.

l.cp1J: The iterative procedure begins with an assumed initial value for AF. The optimized value

AFopt obtained for the last plotted TB point is used as the estimate A' of AFopt for the first search iteration

performed for each TB point.

5IQn2: ATr,' and 6 R' are computed based on the estimate ARF:

ATr,' = ( - A)( bii- aii) (3-ill)

' = Lm( ATri' ) (3-112)

StQ 3: Using the template for (o= oti a gadient search routine, with step size control, is used to

determine the NC magnitude MTB the template nominal point must be shifted to on the NC at phase angle

(pT, such that the uncertainty in closed loop transmission is equal to 8R' in dB. The complex open loop

transmission at the TB point is then:

Li = giqii = MTBejqrB (3-113)

For the open loop transmission in Eq. (3-113) the condition of Eq. (3-103) is satisfied as an equality.

The gradient search method used to determine MTB is discussed in detail later in this section.

51Qp.: The complex transmission of the compensator gi required for the open loop gain to be at the

point ((pu, M-n) on the NC is calculated:
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MTB Cj(yTB

gi - (3-114)qii

51_ 5: From Eq. (2-26) Itijmax at ( = wi can be determined based on the compensator gi value of

Eq. (3-114), from step 4, by applying a binary search to the line segments of the template outline using

the equation:

1 + gi qii (- 5

where qii is the complex transmission of the effective plant associated with each test point examined on the

template outline by the binary search. The search used to determine Itdiljmax is avoided by recognizing that

TRmn,. see Eqs. (3-109) and (3-110), is available as an intermediate result of the search used in step 3.

[td.1max is then calculated:

(Idiilmax •

Itduimax = gi JTR_. (3-116)

where

= Li gi cii (3-117)
T+ ... I max I + gi qii max

and from Eq. (2-19) the maximum value of Idiil for each plant case 1 is:

0d~j~a,),,bki
(Iduilmax); X Iik (3-1 18)

The value Idijilmax required to calculate Itd4,lmax using Eq. (3-116) is then obtained by maximizing Eq.

(3-118) over the J plant cases:

Idijilmax = [ (Idiilmax)] I ... , (3-119)

5I.C.: The CAD package utilizes the value of TR,_, in Eq. (3-117) and ItdImax in Eq. (3-119) to

determine if the trial allocation factor AF results in:

It•.Imax = Td,_ + Ard, (3-120)

where ATd, is an acceptable error tolerance.
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If Eq. (3-120) is satisfied, then the requirement of Eq. (3-102) is satisfied as an equality when the right

hand side, maximized over the template outline, is equal to Itd.lmax. This is seen by rearranging Eq. (3-102)

in the form of Eq. (3-115):

Idiilmax 40l < Tdh (3-121)

11 + 1,

If the requirement of Eq. (3-121) is satisfied, then the estimate A has converged to the optimal

allocation factor AFpt and the iterative procedure terminates. If the requirement of Eq. (3-121) is not

satisfied, then the estimate A"F is ievised and the iterative procedure repeated, beginning with step 2. The

following additional steps zre performed to revise A'F.

S,.p,.7: The allocation factor AFreq required to accommodate ltdilmax, determined in step 5, is calcu-

lated:

AFrq 2 ltdimax (3-122)
bii - aii

SI.p__: The difference between AFreq and AAF is computed as a measure of the error (deviation from

optimal) in the trial value AY:

AFerr = A - AFreq (3-123)

By examining Eqs. (3-105) and (3-122) it is seen that the error term A eli is zero when

ltd~lmay = Tdý. By revising AF such that AFer, is made much smaller (hopefully zero) during the next

iteration, the goal ltdjQmax = Tdý will eventually be achieved. The CAD package uses a gradient step to

make this revision. To implement the gradient step, the slope of AFerr as a function of A is determined.

To compute the slope, values AFerr, and AFerr2 corTesponding to two closely spaced trial values AAI and

AA:2 are required. The slope is then computed and the gradient step used to revise AY. The following

additional steps describe how the gradient step is implemented:

SIU.-_: A" and AFer, from steps 2 to 6 are used as AFerr, and A~i:

AO = A (3-124)
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AFerr = AFerr (3-125)

Step.I : A value for A'F2 is computed by adding a small increment to A"I:

A•F2 = At + 0.02 (3-126)

Step.11: Steps 2 through 8 are repeated with A = A2 to obtain AFerr 2 =AFerr.

SIt..12: The slope of AFer as a function of A-F is computed:

a AFerr AFerr, - AFerr, (3-127)
a AY -= AYl - A"F2 3-27

Step 13: The gradient step is taken to compute the revised AX:

A = AFI (0 AFr,)(a AFerr (3128A•F= 1F +(O-AFerri)i 2-- nj (3-128)

For robustness, a step size control is used for the gradicnt step which is identical to that used for the

search implemented for determining MTB in step 3. The step size control is discussed later in this section.

.Step...1: The iterative procedure is executed again beginning with step 2 using the revised AF.

The iterative method, which is implemented based on the steps outlined above, returns the optimized

AF and the associated MTB obtained in step 3, which is the location of the point on me tracking bound at

angle (PTB for AF = AFop, on the NC. The entire iterative procedure is again applied when plotting the

next point along the tracking bound on the NC, using AFopt from the previous TB point as the initial

estimate in step I of the search procedure. Because the optimal AF often does not change much between

points for a tracking bound plotted at 2° or 50 increments using AFopt of the previous bound point as the

initial AAF, reduces the number of iterations required for A&F to converge to AFopt. By repeating the iterative

procedure for the range of angles of the NC, the complete tracking bound is generated.

For step 3. a gradient search enhanced by step size control is used to determine MTB for a given 8R'

and w = ci. To determine MTB the template is placed on the NC and moved up or down as needed such

that the uncertainty of the closed loop transmission magnitude exactly matches 8R', i.e. Eq. (3-109) is

satisfied. With the template nominal point placed at (%-m, MTB,), where MTB, is a trial value of the NC
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magnitude, the actual uncertainty in the closed loop transmission magnitude 8t is determined by searching

the template outline for the maximum closed loop transmission magnitude TR., and the minimum closed

loop transmission magnitude TRm. The values of TR,. or TR. are determined by using a binary search

to find the minimum or maximum magnitude respectively of the closed loop transmission TR for each line

segment of the template outline using Eq. (3-110) at each point along the segment examined by the search.

The overall minimum or maximum transmission is then TR• or TR.,, respectively.

The value of 8t in dB for the trial template position is then calculated:

8t = Lm(TRnJ - Lm(TRmid) (3-129)

By evaluating 8t at two closely spaced values of MTB, on the NC, a gradient of 8t as a function of

MTB, near the trial template position is estimated as follows:

a3 l 8_ -[t,
_ ~(3-130)

aMrB, MTIB - MTB,

where 81, and (N2 are the uncertainties in closed loop transmission for the

template placed with the nominal point located at (MTB, I,9TB) and (MTB, 2rWB) respectively and where

MTB,, and Mm-n, , are separated by a small distance AM:

MTB, = Mr,, +AM (3-131)

An estimate of the value of MTB at which 8t = 8 R' is then calculated:

MITB = MTB, i+ (OR-8 1 ) --- T (3-132)

where MTB, = (-ITB),- is the estimate of MTB from the previous search iteration.

The excursion AMITB from the previous estimate (MTp).-, is then calculated:

AIClTB = ITB -(ITB),_ (3-133)

If MInTB is within the acceptable range (I0ITB),-, ± AMTB., imposed by the step size control of the

previous estimate (MTB),_,, 8t is determined at the test point MTB, = 10ITB. If I(ITB is outside the acceptable
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range, i.e. IAK1rTBI > AMTB,, the excursion from (MITB),_ to the test point Mm, where St is determined

is made only to the limit of the acceptable step size range:

MTB, = (KITB)i3_ + AMTB, for AI4TB > 0 (3-134a)

MTB, = (MIITB)i_ - AMTBm for AT14T < 0 (3-134b)

The step size control therefore imposes a hard limit on the size of each step of the search procedure

to prevent jumping too far from the region in which the gradient of Eq. (3-127) is valid. If the value of

8t for the test point MTm, is closer to 8R' than that obtained using the previous best estimate (ITB),_ý,

MTB, is accepted as the current best estimate:

(KITB)i-, = (MTB)I (3-135a)

(MITB) = MTm1  (3-135b)

If the difference between St and •SR' is within an acceptable tolerance, the search terminates. Otherwise,

another search iteration is performed, with a reduced step size limit AMTB,. imposed. The search is

continued until successful or until aborted.

The search is aborted if more than a preset number of search iterations are executed without converging

to the desired solution for MTB at which 8t S 8R', or if the size of the gradient step exceeds the step size

limit ANIBmm_ by a factor greater than 100. A large gradient step results when the search becomes trapped

at a local minimum or at a local maximum where the gradient is small. The inverse of the gradient used

in Eq. (3-100) then becomes large, as does the distance from (mTB)i to the estimate •KITB. When the search

is aborted, when trapped in a local maximum or minimum, the gradient search must be restarted from a

new test point. A suitable test point is found by evaluating 8t based on gradually increasing the value of

1M1TB from the value (lATB), at which the search had become trapped until a value of MITB is found for

which 8t overshoots the goal WR'. Several "step-back" iterations are then performed to reduce the amount

of overshoot while maintaining the overshoot condition. Then, for either abort condition, the step size limit

AMTBP, is reset to an initial value, and the search begun again.
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The CAD program begins plotting the tracking bound at the 0* axis by calling a binary search subroutine

with a large search range to obtain a rough initial estimate for MTB to be used by the gradient search

procedure. The gradient search procedure is then used to obtain a refined solution for Mrs, which is then

plotted as a bound point on the NC. The gradient search is used, with the previous MTB as an initial

estimate, to find MTB at each successive angle on the NC. A list of the MTB values and associated NC

phase angles is retained in memory to be plotted on the NC during loop shaping.

The gradient search method for plotting tracking bounds was previously implemented for generating

tracking bounds in a thesis by Sandra Cole (9). An alternative approach to the gradient search is to develop

an equation which can be used to directly calculate the NC magnitude to which the template must be shifted

for a given 8iR'. Direct calculation does not eliminate the need for search routines, however, because the

equation for the NC magnitude requires the template points at which the minimum and maximum trans-

missions occur, TRm,, and TRmin, respectively, be known. These points are not known a-priori and therefore

must be located using a search routine. Furthermore, the location of TRRm3 ., and TRmm on the template outline

change when the template is moved to a new position on the NC, requiring an iterative process be used to

locate the final NC magnitude to which the template must be shifted. Direct calculation was implemented

by Yaniv (22) to plot tracking bounds. The gradient search method was chosen due to its association with

the graphical method of locating tracking bounds presented in (17) and (11) and used in previous ART

thesis work.

3.14.5 Composite Bounds

A set of composite bounds is formed based on any or all of the tracking, stability, disturbance, and

gamma bounds. The composite bound for a given frequency is formed by retaining the most restrictive

portion of the bounds for the given frequency from which the composite bound is formed. The procedure

used to generate the composite bound hides the line segment of any bound whose endpoints lie entirely

within the forbidden regions of other bounds. For a tracking bound, which is a single contour running

across the NC, the forbidden region is the area on the NC below this bound. Thus the tracking bound is
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classified as an "upper bound", as shown in Fig. 3-27. A stability bound is classified as a "closed bound",

as shown in Fig. 3-27, in the context of this discussion since it encloses a forbidden region on the NC.

Disturbance and gamma bounds are likewise classified using the above criteria.

As a first step in forming a composite bound, the bounds from which the composite bound is formed

are placed in a list. The bounds, as stored in this list, may have one of two possible structures, depending

on the classification of the bound. Each upper bound is represented in the form of a list, sorted by angle,

of angle-magnitude coordinate pairs at which upper bound points are plotted over the range of angles

(-360'.O°):

(, ?j Mu1, }, {¼p2 , Muu,} ..... 9{Pn, Muu } (3-136)

Each closed bound is represented in the form of a list, sorted by angle, with one entry for each angle

at which bound points are plotted on the NC. Each entry contains the angle ýp at which the closed bound

points are plotted, as well as the upper limit Mu and lower limit MW of the forbidden region at that angle.

The structure used to represent the closed bound is:

(Pl, MCU, Me],,, {(P2, Mcu WM12 1 ..... 1 (pn, lcu, Mcl. } (3-137)

In this fcom, a pair of bounds is compared and all hidden points identified in linear time. A point on

a bound is marked as hidden if it lies in the forbidden region of any other bound (see Fig. 3-28). For

Closed bound Composite bound
points at I M~i , M. 1 c11

Upper bound

point at {i, M Segments hidden

Fig. 3-27 Pair of bounds on NC Fig. 3-28 Composite bound for bound pair
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example the points { 9ij, Mut } of the upper bound and the lower point of the closed bound point pair

t 9j, Mcui, M1c.l } are hidden points as shown in Fig. 3-28. Each bound must therefore be compared with

every other bound in the list of bounds to identify the hidden points.

A separate structure is used to flag bound points as hidden. For an upper bound it has the structure

is:

I Ipi, Hu 1, {92, Huu2 }...... (Pn, Huu,} } (3-138)

For a closed bound it has the structure is:

I I P,,Hcu, I }, {H1, (P2, H-Ieuz Hc, I... 9n, Hcu,,H, } (3-139)

The flags Huui, Hcu and Hcli are logical variables indicating a point is hidden. When a flag is set to

"True", the bound point is displayed as part of the composite bound. When a flag is set to "False", the

point is hidden. All flags are initially set to 'True" before comparing bounds, and are set to "False" as

hidden points are identified. Once a bound is compared with all other bounds, and the flags are set

accordingly, all line segments for which one or both endpoints are not marked as hidden are included in

the set of line segments used for the composite bound. For example in Fig. 3-28 only the upper point of

the closed bound at phase angle (pi is not flaged as hidden. Therefore, the flags Hci and H are set to

"False" while the flag Hcu, is set to 'True".

Each bound, in turn, is compared with all other bounds and additional composite bound line segments

collected. The final collection of line segments becomes the composite boundary on the NC. A line

secment included on the composite bound may extend into a forbidden region, resulting in rough breaks

at the points of intersection. This is the price paid for the simplicity of this method of generating a composite

bound.

3.15 Conpensator Design

The compensator is designed to satisfy design specifications for the entire row of MISO loops in which

the compensator is used. In the 3x3 set of MISO equivalents shown in Fig. 2-11, it is seen that the same
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compensator gi and effective plant qii are shared by all MISO loops of a given row. This fact implies that

the same set of stability bounds may be used for all MISO loops of the row in which the compensator is

to be used. Since the nominal loop transmission Lio = giqiio is the same for all MISO loops in a given

row, bounds for all MISC loops including stability and tracking bounds for the diagonal MISO loop.

disturbance bounds for the off-diagonal MISO loop, and gamma bounds may all be plotted together on the

NC. The nominal loop transmission Lio is synthesized for an entire row of MISO loops based on the

stabilitv, disturbance. tracking. and gamma bounds plotted together on the NC. Alternatively, a single

composite bound may be used in place of the individual bounds at each bound frequency. The use of

composite bounds may reduce by a factor of four or more the number of bounds displayed on the NC,

reducing the difficulty in keeping track of the bounds that apply at a given frequency.

The CAD package sets the starting open loop transmission function that is used to start the synthesis

(or loop shaping) process to Lio = qiio so that the compensator is initially taken to be gi = 1. To assist in

this loop shaping the CAD package makes a Bode plot of Li., a Nichols plot of Li, with bounds, and a

factored form listing of the compensator gi available to the designer. On both plots, the bound frequencies

arc marked on the loop transmission using colored markers. On the NC, all bounds are plotted in color to

match the color of the markers on the loop transmission. The designer must be sure the colored markers

do not violate bounds of matching color. The Bode plot must be used to read off the frequencies associated

with the colored markers, since the colored markers are used in place of frequency labels on the plot of

Li, on the NC. The Bode plotitlso useful for noting the frequency associated with features of interest

on loop transmission, since this information is not readily obtained from the plot of Lio on the NC. The

Bode plot thus allows better placement of poles and zeros when designing the compensator.

The designer is given the option of labeling Lio with numeric bound frequencies rather than with

colored markers. The designer is also given the option to include numeric frequency labels along the

bounds plotted on the NC. Frequency labels are useful when the NC is to be displayed on a monochrome

monitor or when a hardcopy is generated on a postscript printer.
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Assuming qiio is identified as Li., the CAD package allows the designer to add, delete, or modify the

poles and zeros of Lio and gi. The poles and zeros of Lio associated with qiio cannot be modified and

remain fixed. After any change to the poles and zeros, the gain is automatically adjusted such that the

loop transmission is relatively unaffected at frequencies much less than that associated with the modified

pole or zero. This allows the designer to "bend" the loop transmission on the NC at successively higher

frequencies until an acceptable loop shape is obtained. In addition, the gain can be independently modified,

as needed, by the designer. An updated listing, in factored form, of the poles, zeros, and gain of

gi = Lio/qiio is displayed after any of these changes are made.

Both real and complex poles and zeros may be added to Li.. Complex poles and zeros are displayed

as a natural frequency and a zeta. The designer can add poles and zeros in the form displayed or as a

complex number. The natural frequency of a complex pole or zero relates directly to the location at which

the loop transmission bends, while the value of zeta determines how sharply the loop is bent. The rectan-

-ular coordinates of a complex pole or zero do not relate this information directly. Therefore rectangular

coordinates are not used as the format in which complex poles and zeros are displayed.

The designer may terminate the loop shaping process by saving the compensator gi = Lio/qiio used to

obtain Lio or may abort the design changes before returning to the CAD package menu system. If saved,

the ,ompensator can be further modified by again executing the "Design Compensator" option. Once the

designer has obtained a satisfactory compensator design, and the design has been saved, the prefilter is

designed.

Alternatives exist to the approach used by the MIMO QFT/CAD package. Automatic loop shaping

routines were developed by Thompson (27), and loop gain-phase shaping routines based on the Bode

integral theorem were developed by Bailey (3). In addition, a method of optimizing the loop transmission

based on a cost function was developed by Yaniv (22). The approach used by the MIMO/QFT CAD

package, requiring the designer to choose the poles, zeros, and gain of the compensator, was chosen due
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to the simplicity of implementation. Nevertheless, the MIMO/QFT CAD package may be enhanced in the

future to include routines which automate the loop shaping process.

3.16 Prefilter Design

The proper design of the compensator gi of the loop transmission function Lio guarantees that the

variation in closed loop transmission due to uncertainty for the channel is acceptable, but does not guarantee

that the transmission is within the upper and lower tracking bound specifications aii' and bii'. The prefilter

fii is therefore required to shift the closed loop MISO loop transmission t,, such that it satisfies the upper

and lower tracking bound specifications ad' and bii' shown in Fig. 2-17 on page 2-19 over the range of

plant uncertainty. When using the CAD package, a set of filter bounds on the nominal TR are generated

and plotted on the Bode plot, along with the nominal TR where:

TR = (3-140)

1 + Li

The prefilter is then designed by adding, deleting or modifying the poles and zeros and by adjusting

the gain of the prefilter such that the nominal TR satisfies the filter bounds. Figures 2-17 and 2-18 illustrate

Bode plots of the nominal closed loop transmission both before and after successful prefilter design.

Several steps are required to generate the filter bounds. First, since only aii and bii are available to

the prefilter design progam a portion of the permitted range of variation of TR is allocated to the disturbance

to obtain the values aii' and bii' required to generate the prefilter bounds. The portion allocated to disturbance

is unique at each frequency at which a point on the prefilter bounds is plotted. With the compensator

design in hand, the maximum transmission due to disturbance Itdjilmax is determined from TR,, at each

template frequency w = zi based on gi using the same procedure used in step 5 of the tracking bound

algorithm. Because the phase of tid is unknown, the worst case is assumed; the maximum and minimum

limits on the range of variation of TR must each be reduced by the magnitude of the disturbance, as

illustrated in Fig. 2-17 on page 2-19. The restricted tolerances become:

b bii - ltdilmax (3-141a)
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aii'= aii + ItdImay (3-141b)

Before the filter bounds are generated, TR,._, and TR.n. the maximum and minimum values of ITRI

over the range of plant uncertainty, are obtained at each template frequency tot (11:727). These quantities

are obtained at each wi by placing the template for 6)i on the NC with the nominal point at the location of

tot on the loop transmission Li. = giqiio. The search subroutines used when generating the tracking bounds

are then used to search the outline of the template for the maximum and minimum closed loop transmissions

TR., and TR,.. These values are used to restrict the permitted range of variation about the nominal TR

by the amount of variation in TR which occurs over the range of the template relative to the nominal

transn-ission. By restricting the bounds about the nominal TR. the single nominal TR can be plotted rather

than requiring an array of J transmissions to be plotted, one for each plant case. It is easier to work with

a single transmission within a pair of bounds then to work with J transmissions within a pair of bounds.

The upper and lower filter bounds on the nominal TR are (11:727):

Lm( bij' ) - Lm( TR,, ) (3-142a)

Lm( ai' ) - Lm( TR.) (3-142b)

The filter bounds are plotted on the Bode plot along with the nominal closed loop transmission TR.

Note thlit these bounds, as computed, cover only the range of frequencies covered by the templates. The

CAD package is able to extend this frequency range one decade higher and one decade lower based on the

values of TRmn and TRm,, obtained by minimizing or maximizing ITRI over the plant cases and based on

the value Itd,,max obtained by maximizing ltI over the plant cases. Templates on the NC are not used to

compute these values since no templates are generated in the frequency range ir:o which the bounds are

to be extended. The assumption made here is that the loop transmission is far enough away from the

(-180'.OdB) point such that the constant magnitude contours on the NC are fairly straight in the vicinity

of the template, if it had been generated. Little is gained by searching tem-plate segmens since the segment

endpoints contact the most extreme constant magnitude contours, if straight.
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Once the nominal TR and the filter bounds are plotted on the Bode plot, the prefilter fij = tro/TR is

designed using the same procedure for adding, deleting, and modifying poles and zeros and for modifying

the gain used to design the compensator gi = Lid/qiio where tro is the nominal MISO loop closed loop

transfer function tr,. Once the prefilter design is complete, the designer may e&ther save or abort changes

made to the prefilter, L ,1e design is saved, the design process iE -n!iinued on yet another row of MISO

loops, until all compensators and prefilters have been designed. The completed design can then be tested.

3.17 Flowchart of MIMO QFT/CAD Package

The development of the various phases of the MhMO QFT/CAD package are presented in previous

sections of this chapter. Figure 3-29 is a flowcl.art representing these various phases fi the CAD package.
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models 3
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MIm De complete?
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Binet-C zhy specifications 21

Theorem Testing and
2 6 Select nominal I simulation

6 Select W 3 E
_ End

Form Pe

Fig. 3-29 Flowchart for MIMO QFT CAD Package
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3.18 Simulation

The CAD package provides two methods of validating that the completed MIMO design meets the

stability and performance specifications. The first method (25) allows the designer to validate that the

stability specifications have been satisfied in the frequency domain by plotting on the NC an array of the

J open loop MISO loop transmissions (Li) = gi (qii)i for a given row of MISO loops i for all plant cases

I = 1,2, ... J along with the ML contour (this is none in block 18 in Fig. 3-29). If no open loop transmission

violates the Mt. contour, then the stability specifications have been satisfied for row i of the MISO loops

of Fig. 2-11 on page 2-11. Figure 4-29 on page 4-19 shows the array of open loop transmissions for the

first row of MISO loops in Arnold's thesis.

The second method of validation allows the designer to validate that the performance specifications

placed on the closed loop system have been met by plotting an mxm array of Bode magnitude plots, one

Bode plot for each transfer function in the rnxm transfer function matrix T = {tijj for the closed loop system

(this is done in block 19 of Fig. 3-29). The set of closed loop transfer functions (tij)l for the J plant cases

I= 1,2.... J are plotted on the (i~j) Bode plot along with the performance tolerances aii for ixj and

bij for all i and j, as shown in Fig. 4-29 for the design of Arnold's thesis. Any violation of the performance

tolerances by the closed loop transmissions are evident by inspection of the Bode plots. The designer can

thus noit' the frequency and channel for which a violation occurs, modify the compensator and prefilter

designs, and re-evaluate the frequency response of the closed loop system until satisfied with the results.

The rnxm matrix of closed loop transfer functions Tl for plant case I used to generate the set of Bode

plots shown in Fig. 4-28 on page 4-18 is computed for each of the J plant cases l= 1, 2 ... J using the

equation:

Ti (tDi)i = [ I + (Pe)IG V-I (Pe)I G F (3-143)

Where I is the identity matrix, (PE)j is the mxm plant matrix for plant case 1, (Q is the diagonal

compensator matrix, and E is the diagonal prefilter matrix. The mxm matrix T of transfer functions in s
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is evaluated by direct use of Eq. (3-143) were I, (P.e), G, and F are m~xm matrices of transfer functions

using the symbolic capability of Mathematica. For large systems where m > 2 the transfer function

elements of T may be very high order. For this reason, the log magnitude of the transfer function elements

is evaluated at the complex frequency of each point plotted on the Bode plots by making the assignment

s--j0. High precision numbers must be used when T is calculated using Eq. (3-143) and to evaluate T as

s--jw to overcome the errors in computing the small difference of large numbers encountered when evalu-

ating the magnitude of high order polynomials in coefficient form. Using high precision allows a smooth,

continuous Bode magnitude plot to be generated rather than a jagged, noisy plot. Direct evaluation of T

as s-4jc0 is used because it allows Bode magnitude plots to be generated for arbitrarily high order transfer

functions without the need to transform the high order transfer function elements of T to factored form as

required to use the Bode plot function.

To evaluate the performance of the design in the time domain (this is done in block 21 of Fig. 3-29),

with nonlinearities introduced, the completed design is exported to MATRIXx. The CAD package allows

the designer to store the plant models, compensator matrix, and prefilter matrix in the form of a MATRIXx

command file. The command file, when executed during a MATRIXx session, creates the plant models,

compensator matrix, and prefilter matrix in state space form. The designer may then create a System-Build

model, inserting nonlinear elements if desired, and perform the necessary simulations.

Several alternatives to MATRIXx exist for time domain simulation. Other CAD packages on which

simulation may be performed include Matlab (Fig. 4-1 1 Matlab Bode angle plot comparison), Control-C

(10), and EASY5 (12). The packages Matlab, Control-C, EASY5, and MATRIXx all allow nonlinear

simulation to be carried out in an object-oriented environment. MATRIXx was chosen as the CAD package

to which the finished design is exported because previous QFI thesis work was done using MATRIXx.

The CAD package may be enhanced in the future to allow transfer of the completed design to Matlab,

Control-C, and EASY5.
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3.19 Summary

Chapter 3 discussed the implementation of the MIMO QFr/CAD package. Algorithms used for im-

plementing the CAD package are presented in detail, including the derivation of equations unique to the

MIMO QFT/CAD package software. The software as developed in this chapter is tested by redoing two

MIMO QFT designs done by prior thesis students. Results of this testing are presented in Chap. 4.
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4 Results

4.1 Introduction

This chapter is intended to provide validation of the validity of the MIMO QFr CAD package presented

in this thesis. This validation is accomplished by redoing two MIMO QFT designs done by two prior

AFIT:ENG M.S. thesis students. In accomplishing this validation the following points must be kept in

mind:

(1) Prior AFIT MIMO QFT designs did not have available specially designed QFT CAD packages.

(2) The control CAD packages available in the past did not have the degree of accuracy and the

CAD tools necessary to perform the required MIMO QFT mathematical manipulations.

As is shown in this chapter, the MIMO QFT CAD package developed in this thesis, which is designed

to be used on more powerful computers than were available in the past, provides the necessary degree of

accurtcv and facilitates the QFT design of MIMO control systems.

Sections 4.2 and 4.3 provide a comparison of the designs accomplished by Arnold (2) and Betzold (5),

respectively. Further, in conjunction with this comparison, the validation of the MIMO QFT CAD package

of this thesis is accomplished along with a demonstration of its increased degree of accuracy through a

re-design of the channel 1 compensator and prefilter from Arnold's thesis.

4.2 Validation of Thesis Results of Philip Arnold

In Philip Arnold's thesis (2), MIMO QFT theory was applied to the design of an analog fault tolerant

two channel flight control system for the AFTIIF-16. It was desired that the aircraft performance and

stability conform to design specifications despite the possibility of any of six possible failure modes in any

of four flight conditions. There were therefore 24 plant cases. The failure modes include the normal

aircraft and five combinations of control surface failures in which control authority to the failed surface

has been lost.

The pitch rate and roll rate of the normal aircraft were to be controlled using four control surfaces. A

4x2 weighting matrix, given in the thesis, was used to divide control authority of the two channels among

the four control surfaces. In addition, the transfer function elements of the 2x4 basic aircraft transfer



function matrix were given for each flight condition. Failure modes were modeled by setting to zero transfer

function elements associated with any failed surface. The 2x2 effective plant P.e for that mode was then

formed by utilizing a weighting matrix. A diagonal prefilter F and a diagonal compensator G were used

to control the system.

The validation process began by generating the set of 24 effective plants. The effective plants are

each formed as in Arnold's thesis from the weighting matrix and basic aircraft transfer function matrices

associated with the 24 combinations of flight conditions and failure modes. The effective plant transfer

functions are listed in Appendix A. Next, the equivalent plant transfer functions for the MISO loops are

formed using the CAD package. Common factors are then cancelled using a ratio of 0.0001 as discussed

in Sec. 3.9. The equivalent plants obtained are listed in Appendix B.

Next, design specifications used for the design are defined. The 4 dB ML contour on the NC is used

as the stability specification for both the pitch rate and roll rate channels. The requirement

I - "• + L2o > 0.05 is used to generate gamma bounds for Lio when gj has been designed and Ljo is known

10. MISO 1o.p (1.1) 10 MISO loop (1,2)
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as discussed in Sec. 3.14.3. The tolerances on pitch rate and roll rate responses in the frequency domain

are shown in Fig. 4-1. The QFT design process can now begin.

Template frequencies are selected and entered into the CAD package based on those used by Arnold

and based on resonances in the open loop system. Sets of templates for channels 1 and 2 are then generated,

one template in each set for each template frequency. Plant cases #10 and #22 are chosen as the nominal

plant of channels 1 and 2, respectively, as in Arnold's thesis. The set of templates generated by the CAD

package for channels 1 and 2, with the nominal points emphasized, are illustrated in Figs. 4-2 and 4-3. A

comparison of the templates generated by the CAD package to those given in Arnold's thesis shown in

Figs. 4-4 through 4-9 reveal significant differences in the low frequency templates. These differences arise

for two reasons. First. errors occurred on the calculations used by Arnold to form equivalent plants for

plant cases 14, 15, and 24. For these cases, the gains were incorrect. The second reason for the difference

is that the angle used to plot template points, as obtained from previous CAD packages, could be in error

by 360'. This is the reason for the 360' degree width of Arnold's template for q22 at w = 4.0-d/,ec shown

in Fig. 4-8. That the template width is incorrect can be validated by inspection of the Bode plot generated

by the CAD package of the equivalent plant q22 shown in Fig. 4-10. This effect, which caused the 360'

errors. can be seen by comparing the correct Bode angle plot obtained from the newly developed CAD

package in Fig. 4-10 to the Bode angle plot obtained from MATLAB illustrated in Fig. 4-11. All plant

cases must converge to the same angle at high frequencies, but the result from MATLAB does not reveal

this. Only when the Bode angle is properly determined can the correct templates be generated.

Once the sets of templates are available, bounds on the NC can be generated. Since channel 2 was

designed first by Arnold thus it is also examined first in this comparison. Bounds generated by the CAD

package include stability bounds shown in Fig. 4-12, tracking bounds shown in Fig. 4-13, disturbance

bounds shown in Fig. 4-14, and gamma bounds shown in Fig. 4-15. Composite bounds, shown in Fig.

4-16, are then generated based on the stability, disturbance, and tracking bounds. It is seen by comparing

the composite bounds of Fig. 4-16 to those used by Arnold, shown in Fig. 4-17, that the disturbance bounds

4-3



db

200

IS0

0-O02 w--0.08 w--0.5

100

w--2 w-4

so(

"8 w--20 -- 50

100 20% 300 400 500 600

deg'ccs

Fig. 4-2 Templates for channel 1

db

-- 0.02 w--.08 w--0.

100 ;:.

,.,-- w--2 w--4

50

w-8 w--20 w-50

200 400 600

degree$

Fig. 4-3 Templates for channel 2

4-4



FLCUlS.! 
-7 

!F4!LJRES Ial 
. r S, 

a, ?t 
,0

3C3r~. C'. 'xC. cc c2:cQ -'..3 61.) •C.C"•G - .3c .9 -III 3C .'sO as: - 11. .GO -ýF. CCCECREE.9 
DECREE'S

Fig. 4-4 Template for qj 1, 0.5 rad/sec Fig. 4-5 Template for q:22, 0.5 i'adsec

C IF, C C-1

I ' ' tL I

C1 IF1 01 ![SIIql 
l[

* . t,-.. p_ g . .n C u .

3b2 C "O~ c 2CC ~ CC 6.0 -. 6..ca -,120.02 -ý c .30 .CC -220.0 CO OGcc 90cc C'

Fig. 4-6 Template for q 11, 4 rad/sec Fig. 4-7 Template for q22, 4 rad/sec

:7 :

a~,

4 
-

1 5 . Cp

S --S l o .
C' C if tI I-lt t:J C; .l ' Itt. .6

,, b3P CC - 2'• 2 C, O .l C CCS -'GO 0 - 122,: SC -"C 3 0 0 -2 0 0 6 C 9 O 0

Fig. 4-6 Template for qi h. 4 rad/sec Fig. 4-7 Template for q22, 4 rad/sec

,,-



54.8531-Q Matrix Element (1, 11, All Plant Cases

-20-

-606



170.;90. _4_

20.

60.

I6- 40 30 -30 X0 20 -24 .- 20. -20 -190 -10 10 10.-0.-0 60 4 - -0

40.

-30. . -- 1

-10. ----11 1 7-

•o~0. -340. .0. -300. . .. -260. -240. -- 2 0. -200-U. -180. -160. -140. -1.20. -100.. . -

Fig. 4-12 Sloctedtabkiit bounds for channel 2

.,00 _____ _ _ "__ F ._ _4- _ ., ..

90 -__ ___ __ I __..- .... -r.'-.-'' ___•-! "_ _

- __ __ __ __ __ __ ..._ ... ...._ . ..__ ... .... __

-30 __ _ __ "'_ - - __ I I_

-4 0. . _ _ _ _ _ _ - _

30 .2 T7 - __|_ i___ _

I ' J
20r _ _ _ _ _ 1 ....... ...

" - r - .. . ... " -

so . - - ." "

70.' ;-40 -20

Fi.4.3Aloatdtrcin...d.frchne 2 ,
60.• . ... • i I ... ...... .. ......... "4-7o



100. 0 .. . . . . .0r TT

9 0 -. 
/

70. -0'

60.

40 ' . . ...... ................---- --

- - = P ; 1 -. --------- ----- --- ---......... - --- ---- ---............. _-

30. 1 _ I
.... O ... - -- -.......... -..

20.

_0.o _ _.

-30. '

-40. _ _ --

-5 0-340. -30. 300 -20. -260. -240. -220. -200. -1]0. -160. -140. -120. -100. -80. -60. -40. -20. 0

Fig. 4-14 Disturbance bounds for channel 2

,,,oo .- L ____ F _______ !'___ F ! ___ ___ _

110. ___________- T
S:I I

90- ' i

I ___ ___ ' ___

40 t ', I _. ___ I - _ iz _ l b

-0.- 0 0. 0 . 0

Fig. ' i 4-5Gam oud frcane

4-2

' I A

.40,1I

0J. -320 -3 0 -2 O 2 0 2) . "1 0 -160.. -12 . ,1-,.,U • -40 .. -__0...,

Fig. 4-15 Gamma bounds for channel 2

4-8



100o.02

90. __-_ _- _-

70. 00 
0.

__. I. __ . j_ __ _-

...... .. .. ... ....... .t ... ........... ......... ..I ............. ..... ..
" __..... _ _--_ .. ... ... . .. .. _ ___ 1 - 0 8 -L2222 2221, 22 1 22 212;

'05

-- -- - -- -- ---- -
.30. , ..... - . -. --------.....- --- - ---- - - - - - -- ---- -_----_---

~-$- 0.-3140 -320. -300. -28,0 -260 .-- 220.-00. -160 -140. -120. -100. -80. -60. -40. -20. 0

Fig. 4-16 Composite bounds with OLTF for channel 2

° •0
0-360.00 -300.00 -240.00 -180.00 -120.00 -60ý.O Q. 0

jw=.5 Bbs)
o= I, Bo(i) 6

=2 Bp(2)o 0

m 4dB w}=I 6
M W=2006
0 C3

U* Ci50

= 20 CW=200
WA=8

CW=400
L2 0 •=500

'-360.00 -o00.00 -240.00 -180.0o -120.00 -60.00 0.60
OEG

Fig. 4-17 Channel 2 OLTF from Arnold's thesis

4-9



dominate the composite bounds in both cases and that the disturbance bounds generated by the CAD package

are less restrictive. Keeping in mind items I and 2 of Sec. 4.1, Arnold's BD21jji) bounds compare favorably

with those generated by the CAD package. The difference arises due to the manner in which the disturbance

bound on the loop transmission is computed.

In the CAD package the limit is implemented for the (ij) MISO loop as:

+qiiIV• -I bj (4-1)
II +qjgj bi i-lq~ij

k~ei )max

The cxprcession used by the CAD package is exact whereas in Arnold's thesis it is approximate, based on

I I + L I ý ILl in the low to range. resulting in a more restrictive bound. For Arnold's case, when

IL:ol >> 1, the expression for the second channel, used by the CAD package, simplifies to:

I L"Ll- I _ bti q22It222L,221721(4-2)
q2i,,-,b~i

An additional discrepancy exists between the bounds used by Arnold and those generated by the CAD

package. Arnold used only stability bounds for w > 2 rad/sec,. while the CAD package shows that tracking

and disturbance boIunds exist for all template frequencies. The disturbance bounds for L2., as - never

drop oft the NC ftr Arnold's case because the restriction on I l+LiI, i.e...

1,-L2! >- b,'-!q27 (4-3)

does no( continue to become less restrictive for high frequencies as w--->. This is true because all terms bit.

q22. b2 i. and q2i have an excess of poles over zeros of one, and therefore the magnitude of the right hand

side of Eq. (4-3) entire quantity reaches a constant value at high frequencies. A limit exists, therefore, as

to how much less restrictive the disturbance bounds become as the frequency for which the bounds are

generated is increased. Control analysis considerations, however, permit the designer to disregard perform-

ance (tracking and disturbance) bounds at high frequencies since above some frequency wh only stability

bounds are of concern (16). Once this open loop transmission has decreased to less than -12 dB, the effect

of the open loop transmission on the time domain performance (transient response) of the closed loop
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systemi is considered negligible. Therefore, the accepted practice is to consider only stability bounds for

(.i > WOh. The CAD package generates and displays all bounds to allow the designer to apply engineering

judgment in choosina which performance bounds to consider when designing the compensator.

Another significant difference between the bounds used by Arnold and tiiose of the CAD package is

evident in thle pila~ing of tracking bounds. Because Arnold used a manual technique to plot the tracking

hounds, he c',uld never have plotted the tracking bound at W= 0.02 or at 6) = 0.08. Also, Arnold could

not ha\ve plotted the tracking bounds at 6)= 8 or at (o= 20 properly because he did not allocate a portion

of~ 6R~ to distIurbance before checking for the existence of a tracking bound.

The open loop transmission on the NC with composite bounds (dominated by disturbance bounds) is

shown in Fig-. 4-16. As plotted, the performance bounds have all been violated. Also shown is the open

loo~p transnmission with Pamma bounds in Fig. 4-18. It is seen that the loop transmission does not violate

thle edanmn bounds for any of the bound frequencies. Accordingly, no right- half plane poles are introduced

N.hen Arnold applied the improved method for his channel 1 design. A Bode plot of the open loop
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Fig. 4-18 Gamma bounds with OLTF for channel 2
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transmission in Fig 4-19 shows a a 0 dB crossover frequency of 27 -ad/&,e, which is about as high as

acceptable for an aircraft flight control problem. There is little the designer can do, therefore, in terms of

adding gain to satisfy the performance bounds on the NC. The bounds used for prefilter design are shown

in Fig. 4-20. The prefilter from Arnold's thesis satisfies the tolerances on the nominal closed loop trans-

mission up to 20 rad/se, where bii is -20 dB. Since this is less than -12 dB, the prefilter design is considered

good.

Arnold next accomplished the design of channel 1 by applying the improved method. He recognized

that 1j << I for all plant cases resulted in the equivalent plant qt le being essentially equal to qt 1. The

bounds are therefore generated by the CAD package of this thesis using the qii plants. The stability,

tracking, and disturbance bounds are shown in Figs. 4-21, 4-22, and 4-23 respectively. Composite bounds,

shown in Fig. 4-24, are then formed based on the stability, tracking, and disturbance bounds. The composite

bounds of Fig. 4-24 are now compared to those given in Arnold's thesis shown in Fig. 4-25. The composite

bounds of the CAD package as well as those given in Arnold's thesis are dominated by disturbance bounds.
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Fie. 4-21 Stability bounds for channel 1
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The disturbance bounds on L1 o generated by the CAD package, while slightly more restrictive, are in good

agreement with those used by Arnold. The CAD package does, however generate disturbance bounds for

all template frequencies while Arnold plotted disturbance bounds only for co 1 tIad/sec and w =2 rad/ec.

Applying engineering judgment, Arnold chose to satisfy only stability bounds for frequencies greater than

2 rad/see. The open loop transmission shown on the NC with composite bounds generated by the CAD

package in Fig. 4-24 violates the performance bounds for frequencies greater than 1 rad/sec, which are

dominated by the disturbance bounds. From the Bode plot of the loop transmission, Fig. 4-26, it is seen

that the frequency at which the loop transmission crosses the 0 dB axis is 17 rad/sec. This frequency is

below the highest tolerable crossover frequency for the aircraft flight control system of 30 tld/sc. (16). As

with the opei; loop of channel 2, the gain cannot be increased much further in an attempt to meet the

performance bounds without exceeding the highest tolerable crossover frequency. Arnold therefore could

not have satisfied the disturbance bounds for frequencies above 1 ad/se, if they had been plotted.

The Bode plot of the nominal closed loop transmission with upper and lower filter bounds shown in

Fig. 4-27 shows that the prefilter design satisfies the diagonal MISO loop performance specifications up

to the frequency 60 rd(V which is much larger than needed, except for the region around 0.08 rad/ec, at

which the channel between a'ii and b'ii is pinched off. This violation must be tolerated for the same reason

that the violation in the disturbance bound violations must be tolerated: the gain cannot be increased without

limit.

The closed loop transfer function matrix is then formed based on the compensator and prefilter transfer

functions given in Arnold's thesis and the effective plants formed from the basic plant models and weighting

matrix. Bode plots of the closed loop system response of the true MIMO system are plotted by the CAD

package and are shown in Fig. 4-28 along with the performance tolerances. The violations in the disturbance

bounds, in particular. manifest themselves in violation of the performance tolerances of the off-diagonal

closed loop transmissions. The violation of the tracking bound at 0.08 rad/sec for channel 2 results in the

notch at 0.08 rad/sec in the closed loop response of the (1,1) transfer function. The plot of closed loop
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transfer function responses, therefore, is shown to be a useful tool for visualizing the consequences of

violating performance bounds on the NC during the design process.

The open loop transmissions of the 24 plant cases are plotted on the NC for channel 1 and channel 2

in Figs. 4-29 and 4-30, respectively, to verify that the compensator designs satisfy the stability specifications.

From the Nichols plots, it can be seen by inspection that for channels 1 and 2 none of the open loop

transmissions violate the 4 dB ML contour on the Nichols plots of Figs. 4-29 and 4-30.
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Fig. 4-28 Closed loop transmissions for Arnold
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4.3 Validation of Thesis Results of Robert Betzold

The implementation of the algorithms of the MIMO CAD package is also validated by comparing

results obtained by using the CAD package to those shown in Betzold's thesis (5). In his thesis, Betzold

applied MIMO QFT theory by utilizing the improved method to design the analog channel controllers for

the C-135 aircraft. He also utilized diagonal prefilter and compensator matrices, F and G, respectively, for

his 2x2 effective plant. Bank angle and sideslip are the aircraft parameters to be controlled. Since there

is no sideslip command input, only one equivalent MISO and one SISO loop are considered in the thesis:

roll due to roll command and sideslip due to roll command as shown in Figs. 4-31 and 4-32, respectively.

Betzold provides the equivalent plant matrix Q for each of the three flight conditions considered in

his design. These plant matrices are manually entered into the CAD package. Effective plant matrices are

formed by working backwards from Q to Pe for the purpose of forming the closed loop system to illustrate

the performance of the controller in the frequency domain. The diagonal elements qii of the matrix Q are

used directly to form the plant templates shown in Fig 4-33 for channel I and in Fig. 4-34 for channel 2.

Betzold began by designing the off-diagonal SISO loop of channel 2, see Fig. 4-32, to meet specifi-

cations on sideslip due to roll command. Plant case 2 is chosen as the nominal plant for channel 2 and is

d 11

fl 11 91 q 11

Fig. 4-31 (1,1) MISO loop from Betzold's thesis

d

92 q22

Y2 1

Fig. 4-32 (2,1) SISO loop from Betzold's thesis
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emphasized on the chart of templates shown in Fig. 4-34. For this channel, stability, disturbance, and

gamma bounds are generated by the CAD package as shown in Fig. 4-35, Fig. 4-36, and Fig. 4-37

respectively. Tracking bounds are not generated since there is no sideslip command. Next, a set of

composite bounds are generated by the CAD package based on the stability and disturbance bounds. The

open loop transmission plotted on the NC along with the composite bounds is shown in Fig. 4-38. The

plot shows that the open loop transmission of channel 2 easily satisfies all composite bounds generated by

the CAD package. Comparing the composite bounds generated by the CAD package to those from Betzold's

thesis shown in Fig. 4-39, the bounds are seen to be in close agreement.

Since Betzold was using the improved method, the open loop transmission is also plotted on the NC

with the gamma bounds as shown in Fig. 4-37. The loop easily satisfies all gamma bounds. Accordingly,

no new right-half plane poles are introduced into the equivalent plants formed by applying the improved

method. Next, a Bode plot of the open loop transmission is generated showing an acceptable 0 dB crossover

frequency of 20 rad/sc. No prefilter is designed for this channel since there is no sideslip input.

,.3 -- "-.. . .- -:

4D. _ _

___ _ _ -__ - - - - - - - - - -

"-4 -M 0•,. .0..-200..-1... -1. . . -140. -120. -1. 0. -80. -O. -40. -20. a

Fig. 4-35 Stability bounds for channel 2
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Next, Betzold designed the compensator and prefilter for channel 1. Betzold applied the improved

method to obtain a new set of equivalent plants qI1, which are manually substituted for qII in the CAD

package. A plant not among the plant cases is chosen as the nominal plant. Therefore no plant point is

emphasized on the templates for the first channel shown in Fig. 4-33. Once the templates are generated,

the bounds are formed. For the roil channel, channel 1, only stability and tracking bounds are generated,

and are shown in Figs. 4-40 and 4-41 respectively. No disturbance bounds are generated since there is no

sideslip command input for channel 2. It can also be seen that the tracking bound is significantly more

restrictive than those plotted by Betzold. The difference arises because Betzold did not allocate for dis-

turbance when plotting the tracking bound.

The open loop transmission and composite bounds are then plotted on the NC by the CAD package

as shown in Fig. 4-42. The open loop transmission violates every tracking bound on the NC. This contrasts

with the open loop and tracking bounds in Betzold's thesis, shown in Fig. 4-43, which satisfies the tracking

bounds. When the tracking bounds generated by the CAD package do not take disturbance into account,

the tracking bounds as plotted on the NC in Fig. 4-44 are identical to those of Betzold's thesis; none of

the bounds are violated by the open loop transmission. The consequences of not taking the effect of

disturbance into account is apparent when the closed loop system is formed and the Bode plot of tjj plotted.

The compensator for channel 1 is now re-designed to validate that the frequency domain performance

tolerances all and bIt are satisfied when the open loop transmission Lto satisfies the bounds generated by

the CAD package. First, a Bode plot of the open loop transmission for channel I using the compensator

given in Betzold's thesis is examined. From the Bode plot in Fig. 4-45, it is seen that the 0 dB crossover

frequency for the open loop is I rad/see. More gain can be tolerated in channel 1 since this has a low cutoff

frequency. When the CAD package plots the nomitial closed loop transmission with filter bounds based

on Betzold's compensator, shown in Fig. 4-46, the upper bound is below the lower bound. This is caused

by the fact that the allocated tracking bounds are all violated by the open loop transmission. Figure 4-46

implies. therefore, that no solution exists for the prefilter design problem using the compensator given in
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Betzold's thesis. The closed loop system is then formed for each effective plant using the compensators

and prefilter given in the thesis. Bode plots are then generated for the transfer function elements of interest,

and are shown in Fig. 4-47 along with the performance tolerances. The frequency domain transmission of

the roll channel, channel 1, violates the design specifications.

The compensator and prefilter of channel 1 is re-designed based on the allocated tracking bounds

generated by the CAD package as an attempt to satisfy the requirements on the closed loop system. The

loop transmission, based on a re-designed compensator, is shown on the NC in Fig. 4-48. The re-designed

compensator transfer function is:

2.03x10 7 (s+ 1.6)

(s + 28 + j28.57)(s + 28 - j28.57)(s + 20 + j34.64)(s + 20 - j34.64)

Next, the prefilter is re-designed based on the nominal closed loop transmission obtained when using

the new compensator. The Bode plot with filter bounds of the nominal closed loop transmission, when

using the re-designed prefilter, is shown in Fig. 4-49. The transfer function of the re-designed prefilter is:

1.35 (4-10)(s + 0.45)(s + 3)

The closed loop system is then formed based on the re-designed compensator and prefilter of channel

1. A Bode plot of the transmission of the closed loop transfer function elements in Fig. 4-50 indicates that

the performance tolerances are satisfied up to 40 radK,,. violating all when the closed loop transmission is

negligible at -80 dB. Clearly the design now satisfies the performance requirements in the frequency range

of interest.

Finally, the open loop transmissions of the 3 plant cases are plotted on the NC for channel 1 and

channel 2 in Figs. 4-51 and 4-52, respectively, to verify that the compensator designs satisfy the stability

specifications. From the Nichols plots, it is seen by inspection that for channels I and 2 none of the open

loop transmissions violate the 3 dB ML contour on the Nichols plots of Figs. 4-51 and 4-52.
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4.4 Summary

This chapter has shown that the results obtained using the MIMO/QFT CAD software are in goodt

agreement with results obtained by Betzold and Arnold in past thesis work. Cases where the results are

not in agreement occurred due to the increased accuracy of software CAD routines and due to the more

exact but more computationally intensive methodls used by the CAD software. As noted in items I and 2

of Sec. 4.1, the accuracy of previous thesis work was limited by the absence of CAD software specialized

for QFT. From this exercise, the CAD software has demonstrated that it is a very useful tool which

overcomes these difficulties by reducing computational errors and the possibility of human error by auto-

mating the design process. The availability of this software should expedite the utilization of the QFT

technique by multivariable control system designers.
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5 Chapter 5

5.1 Accomplishments

The efforts of this thesis have provided the following accomplishments:

"* Provides for the menu driven automated MIMO QFT CAD package developed

"* Provides for the automated loading of contractor plant matrix data

"* Provides for the implementation of a symbolic weighting matrix for gain scheduling

"* Provides for the implementation of generalized polynomial matrix inverse using arbitrary preci-

sion calculations

"* Provides for the automatic generation of templates

"* Provides for the automatic generation of stability, tracking, disturbance, and composite bounds

"* Provides for the automatic allocation to disturbance during generation of tracking bound

"* Provides the capability of generating gamma bounds for use with the improved method on a

2x2 system

"* The implementation of the improved method for 2x2 MIMO systems

"* The implementation of compensator design procedure on the NC

"* The implementation of prefilter design procedure on the Bode plot

"* The implementation of frequency domain evaluation of closed loop system performance

"* The implementation of frequency domain method to verify a satisfactory stability margin ex-

ists for the MISO equivalent loops

5.2 Conclusions

"* A MIMO QFT CAD package is developed during during this thesis effort which is capable of

carrying a design from problem specifications and contractor plant models, through the design

process, to frequency domain evaluation of the closed loop compensated system.

"* The QFT/MIMO CAD package implementation is judged successful based on agreement with

the results obtained from past MIMO QFT thesis work.



* The QFr/MIMO CAD package provides improved accuracy and eliminates potential sources

of error.

5.3 Recommended Areas of Further Study

The following areas of further study and improvement of this CAD package are recommended:

"* Extending the package to handle discrete control problems

"* The implementation of a generalized improved method for mxm MIMO systems

"* The implementation of the Binet-Cauchy theorem

"* The automation of weighting matrix tuning process

"* The implementation of generalized test for diagonal dominance for any mxm problem

"* The improvement in robustness of polynomial root solver

"* Extending the method of generating gamma bounds to any mxm problem

"* The implementation of an option allowing the designer to renumber plant outputs

"* The implementation of automatic loop shaping routines

"* The development of an automated algorithm for optimizing bij specification of the off-diago-

nal MISO loops to reach equilibrium between the disturbance bounds and the tracking bounds

on the NC when the bij specifications are not a-priori fixed

"* The development of routines for time domain performance analysis of the closed loop system

"* The addition of the option to export the finished design to Matlab and EASY5 for simulation



A Appendix A - Philip Arnold's Design

A. I Pe Matrix Transfer Functions From CAD Package

A.1.1 Plant Case 1

Plant Case: 1 Element: (1, 1)

Roots of Numerator Roots of Denominator

0 0.3633
-0.01750899094 -0.07683 + 0.2065 T
-0.1041 -0.07683 - 0.2065 I
-0.2741 + 1.909 I -0.1041
-0.2741 - 1.909 I -0.2741 + 1.909 I
-0.4616997602 -0.2741 - 1.909 I
-0.6835 -0.6835

-1 3

Factored form gain multiplier: -2.17555

Plant Case: 1 Element: [1, 2)

Roots of Numerator Roots of Denominator

0.3633

-0.07683 + 0.2065 I
-0.07683 - 0.2065 I
-0.1041
-0.2741 + 1.909 I
-0.2741 - 1.909 I
-0.6835
-1.3

Factored form gain multiplier: 0

A-i



Plant Case: 1 Element: (2, 1}

Roots of Numerator Roots of Denominator

0.3633
-0.07683 + 0.2065 I

-0.07683 - 0.2065 I
-0.1041
-0.2741 + 1.909 I
-0.2741 - 1.909 I

-0.6835
-1.3

Factored form gain multiplier: 0

Plant Case: 1 Element: [2, 2]

Roots of Numerator Roots of Denominator

0.3633 0.3633
0 -0.07683 + 0.2065 I

-0.07683 + 0.2065 I -0.07683 - 0.2065 I

-0.07683 - 0.2065 I -0.1041
-0.2236638493 + 1.029339632 I -0.2741 + 1.909 I
-0.2236638493 - 1.029339632 I -0.2741 - 1.909 I
-1.3 -0.6835

-1.3

Factored form gain multiplier: -5.549

A-2



A. 1.2 Plant Case 2

Plant Case: 2 Element: (1, 1)

Roots of Numerator Roots of Denominator

0 0.3633
-0.01677417266 -0.07683 + 0.2065 I
-0.1041 -0.07683 - 0.2065 I
-0.2741 + 1.909 I -0.1041
-0.2741 - 1.909 I -0.2741 + 1.909 I
-0.4668627603 -0.2741 - 1.909 I
-0.6835 -0.6835

-1.3

Factored form gain multiplier: -1.05755

Plant Case: 2 Element: (1, 2)

Roots of Numerator Roots of Denominator

0 0.3633
-0.01822 -0.07683 + 0.2065 I
-0.1041 -0.07683 - 0.2065 I
-0.2741 + 1.909 I -0.1041
-0.2741 - 1.909 I -0.2741 + 1.909 I
-0.4568 -0.2741 - 1.909 I
-0.6835 -0.6835

-1.3

Factored form gain multiplier: 0.2795

A-3



Plant Case: 2 Element: (2, 1]

Roots of Numerator Roots of Denominator

0.3633 0.3633
0 -0.07683 + 0.2065 I

-0.07683 + 0.2065 I -0.07683 - 0.2065 I
-0.07683 - 0.2065 I -0.1041
-0.3017 + 1.562 I -0.2741 + 1.909 I
-0.3017 - 1.562 I -0.2741 - 1.909 I
-1.3 -0.6835

-1.3

F -tored form gain multiplier: 2.142

t Case: 2 Element: (2, 2)

Roots of Numerator Roots of Denominator

0.3633 0.3633
0 -0.07683 + 0.2065 I

-0.07683 + 0-2065 I -0.07683 - 0.2065 I
-0.07683 - 0.2065 I -0.1041
-0.2!53286826 + 0.9546662645 1-0.2741 + 1.909 I
-0.2153286526 - 0.9546662645 1-0.2741 - 1.909 1
-1,3 -0.6835

-1.3

Factored form gain multiplier: -5.0135
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A.1.3 Plant Case 3

Plant Case: 3 Element: (1, 1)

Roots of Numerator Roots of Denominator

0 0.3633
-0.01786739384 -0.07683 + 0.2065 I
-0.1041 -0.07683 - 0.2065 I
-0.2741 + 1.909 I -0.1041
-0.2741 - 1.909 I -0.2741 + 1.909 I
-0.4592182832 -0.2741 - 1.909 I
-0.6835 -0.6835

-1.3

Factored form gain multiplier: -2.205775

Plant Case: 3 Element: (1, 2)

Roots of Numerator Roots of Denominator

0 0.3633
-0.06537 -0.07683 + 0.2065 I
-0.1041 -0.07683 - 0.2065 I
-0.2589 -0.1041
-0.2741 + 1.909 1 -0.2741 + 1.909 I
-0.2741 - 1.909 I -0.2741 - 1.909 I
-0.6835 -0.6835

-1.3

Factored form gain multiplier: -0.1209
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Plant Case: 3 Element: (2, 1)

Roots of Numerator Roots of Denominator

0.3633 0.3633
0 -0.07683 + 0.2065 I

-0.07683 + 0.2065 I -0.07683 - 0.2065 I
-0.07683 - 0.2065 I -0.1041
-0.205 + 0.853 I -0.2741 + 1.909 I

-0.205 - 0.853 I -0.2741 - 1.909 I
-1.3 -0.6835

-1.3

Factored form gain multiplier: 0.55975

Plant Case: 3 Element: (2, 2)

Roots of Numerator Roots of Denominator

0.3633 0.3633
0 -0.07683 + 0.2065 I

-0.07683 + 0.2065 I -0.07683 - 0.2065 I
-0.07683 - 0.2065 I -0.1041
-0.2362887311 + 1.132993767 I -0.2741 + 1.909 I
-0.2362887311 - 1.132993767 I -0.2741 - 1.909 I
-1.3 -0.6835

-1.3

Factored form gain multiplier: -3.31
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A.1.4 Plant Case 4

Plant Case: 4 Element: [1, 1)

Roots of Numerator Roots of Denominator

0 0.3633
-0.01750899094 -0.07683 + 0.2065 I
-0.1041 -0.07683 - 0.2065 I
-0.2741 + 1.909 I -0.1041
-0.2741 - 1.909 I -0.2741 + 1.909 I
-0.4616997602 -0.2741 - 1.909 I
-0.6835 -0.6835

-1.3

Factored form gain multiplier: -1.087775

Pjant Case: 4 Element: fl, 2)

Roots of Numerator Roots of Denominator

0 0.3633
-0.003009051506 -0.07683 + 0.2065 I
-0.1041 -0.07683 - 0.2065 I
-0.2741 + 1.909 I -0.1041
-0.2741 - 1.909 I -0.2741 + 1.909 I
-0.5869269321 -0.2741 - 1.909 I
-0.6835 -0.6835

-1.3

Factored form gain multiplier: 0.1586
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Plant Case: 4 Element: f2, 1)

Roots of Numerator Roots of Denominator

0.3633 0.3633
0 -0.07683 + 0.2065 I

-0.07683 + 0.2065 I -0.07683 - 0.2065 I
-0.07683 - 0.2065 I -0.1041
-0.2816656426 + 1.444520055 I -0.2741 + 1.909 I
-0.2816656426 - 1.444520055 I -0.2741 - 1.909 I
-1.3 -0.6835

-1.3

Factored form gain multiplier: 2.70175

Plant Case: 4 Element: (2, 2]

Roots of Numerator Roots of Denominator

0.3633 0.3633

0 -0.07683 + 0.2065 I
-0.07683 + 0.2065 I -0.07683 - 0.2065 I
-0.07683 - 0.2065 I -0.1041
-0.2236638493 + 1.029339632 I -0.2741 + 1.909 I
-0.2236638493 - 1.029339632 I -0.2741 - 1.909 I
-1.3 -0.6835

-1.3

Factored form gain multiplier: -2.7745
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A. 1.5 Plant Case 5

Plant Case: 5 Element: {1, 1 }

Roots of Numerator Roots of Denominator

0 0.3633
-0.01750899094 -0.07683 + 0.2065 I
-0.1041 -0.07683 - 0.2065 I
-0.2741 + 1.909 I -0.1041
-0.2741 - 1.909 I -0.2741 + 1.909 I
-0.4616997602 -0.2741 - 1.909 I
-0.6835 -0.6835

-1.3

Factored form gain multiplier: -1.087775

Plant Casp- 5 Element: (1, 2)

Roots of Numerator Roots of Denominator

0 0.3633
-0.0271399588 -0.07683 + 0.2065 I
-0.1041 -0.07683 - 0.2065 I
-0.2741 + 1.909 I -0.1041
-0.2741 - 1.909 I -0.2741 + 1.909 I
-0.4023613724 -0.2741 - 1.909 I
-0.6835 -0.6835

-1.3

Factored form gain multiplier: 0.4004
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Plant Case: 5 Element: {2, 1)

Roots of Numerator Roots of Denominator

0.3633 0.3633
0 -0.07683 + 0.2065 I

-0.07683 + 0.2065 I -0.07683 - 0.2065 I
-0.07683 - 0.2065 I -0.1041
-0.3359094012 + 1.743875067 I -0.2741 + 1.909 I
-0.3359094012 - 1.743875067 I -0.2741 - 1.909 I
-1.3 -0.6835

-1.3

Factored form gain multiplier: 1.58225

Plant Case: 5 Element: (2, 2)

Roots of Numerator Roots of Denominator

0.3633 0.3633
0 -0.07683 + 0.2065 I

-0.07683 + 0.2065 I -0.07683 - 0.2065 I
-0.07683 - 0.2065 I -0.1041
-0.2236638493 + 1.029339632 I -0.2741 + 1.909 I
-0.2236638493 - 1.029339632 I -0.2741 - 1.909 I
-1.3 -0.6835

-1.3

Factored form gain multiplier: -2.7745
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A. 1.6 Plant Case 6

Plant Case: 6 Element: {1, 1)

Roots of Numerator Roots of Denominator

0 0.3633
-0.01822 -0.07683 + 0.2065 I
-0.1041 -0.07683 - 0.2065 I
-0.2741 + 1.909 I -0.1041
-0.2741 - 1.909 I -0.2741 + 1.909 I
-0.4568 -0.2741 - 1.909 I
-0.6835 -0.6835

-1.3

Factored form gain multiplier: -2.236

Plant Case: 6 Element: [1, 2)

Roots of Numerator Roots of Denominator

0.3633
-0.07683 + 0.2065 I
-0.07683 - 0.2065 I
-0.1041
-0.2741 + 1.909 I

-0.2741 - 1.909 I
-0.6835
-1.3

Factored form gain multiplier: 0
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Plant Case: 6 Element: (2, 1)

Roots of Numerator Roots of Denominator

0.3633
-0.07683 + 0.2065 I

-0.07683 - 0.2065 I
-0.1041
-0.2741 + 1.909 I

-0.2741 - 1.909 I
-0.6835
-1.3

Factored form gain multiplier: 0

Plant Case: 6 Element: [2, 2]

Roots of Numerator Roots of Denominator

0.3633 0.3633
0 -0.07683 + 0.2065 I

-0.07683 + 0.2065 I -0.07683 - 0.2065 I
-0.07683 - 0.2065 I -0.1041
-0.3017 + 1.562 I -0.2741 + 1.909 I
-0.3017 - 1.562 I -0.2741 - 1.909 I
-1.3 -0.6835

-1.3

Factored form gain multiplier: -1.071
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A.1.7 Plant Case 7

Plant Case: 7 Element: (1, 1)

Roots of Numerator Roots of Denominator

0.07795 1.167
0 0.07795

-0.009939645444 -0.006472 + 0.07803 I
-0.211 + 1.953 I -0.006472 - 0.07803 I
-0.211 - 1.953 I -0.211 + 1.953 I
-0.5620045698 -0.211 - 1.953 I
-0.8265 -0.8265

-2.028

Factored form gain multiplier: -5.91495

Plant Case: 7 Element: (1, 2)

Roots of Numerator Roots of Denominator

1 .167
0.07795

-0.006472 + 0.07803 I
-0.006472 - 0.07803 I
-0.211 + 1.953 I

-0.211 - 1.953 I
-0.8265
-2.028

Factored form gain multiplier: 0

A-13



Plant Case: 7 Element: (2, 11

Roots of Numerator Roots of Denominator

1.167
0.07795

-0.006472 + 0.07803 I
-0.006472 - 0.07803 I
-0.211 + 1.953 I
-0.211 - 1.953 I
-0.8265
-2.028

Factored form gain multiplier: 0

Plant Case: 7 Element: (2, 2)

Roots of Numerator Roots of Denominator

1.167 1.167
0 0.07795

-0.006472 + 0.07803 I -0.006472 + 0.07803 I
-0.006472 - 0.07803 I -0.006472 - 0.07803 I
-0.2231060935 + 1.697351372 I -0.211 + 1.953 I
-0.2231060935 - 1.697351372 I -0.211 - 1.953 I
-2.028 -0.8265

-2.028

Factored form gain multiplier: -20.842
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A.1.8 Plant Case 8

Plant Case: 8 Element: (I, 11

Roots of Numerator Roots of Denominator

0.07795 1.167
0 0.07795

-0.009845163158 -0.006472 + 0.07803 I
-0.211 + 1.953 I -0.006472 - 0.07803 I
-0.211 - 1.953 I -0.211 + 1.953 I
-0.5735955769 -0.211 - 1.953 I
-0.8265 -0.8265

-2.028

Factored form gain multiplier: -2.98395

Plant Case: 8 Element: (1, 2)

Roots of Numerator Roots of Denominator

0.07795 1.167
0 0.07795

-0.01004 -0.006472 + 0.07803 I
-0.211 + 1.953 I -0.006472 - 0.07803 I
-0.211 - 1.953 I -0.211 + 1.953 I
-0.5502 -0.211 - 1.953 I
-0.8265 -0.8265

-2.028

Factored form gain multiplier: 0.73275
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Plant Case: 8 Element: (2, 1)

Roots of Numerator Roots of Denominator

1.167 1.167
0 0.07795

-0.006472 + 0.07803 I -0.006472 + 0.07803 I
-0.006472 - 0.07803 I -0.006472 - 0.07803 I
-0.2442 + 2.101 I -0.211 + 1.953 I
-0.2442 - 2.101 I -0.211 - 1.953 I
-2.028 -0.8265

-2.028

Factored form gain multiplier: 6.792

Plant Case: 8 Element: (2, 2)

Roots of Numerator Roots of Denominator

1.167 1.167
0 0.07795

-0.006472 + 0.07803 I -0.006472 + 0.07803 I
-0.006472 - 0.07803 I -0.006472 - 0.07803 I
-0.2212351442 + 1.656795028 I -0.211 + 1.953 I
-0.2212351442 - 1.656795028 I -0.211 - 1.953 I
-2.028 -0.8265

-2.028

Factored form gain multiplier: -19.144

A-16



A. 1.9 Plant Case 9

Plant Case: 9 Element: [I, 1)

Roots of Numerator Roots of Denominator

0.07795 1.167
0 0.07795

-0.009989054852 -0.006472 + 0.07803 I
-0.211 + 1.953 I -0.006472 - 0.07803 I
-0.211 - 1.953 I -0.211 + 1.953 I
-0.5561293643 -0.211 - 1.953 I
-0.8265 -0.8265

-2.028

Factored form gain multiplier: -5.888475

Plant Case: 9 Element: (1, 2)

Roots of Numerator Roots of Denominator

0.07795 1.167

0 0.07795
-0.006697 -0.006472 + 0.07803 I
-0.211 + 1.953 I -0.006472 - 0.07803 I
-0.211 - 1.953 I -0.211 + 1.953 I
-0.8265 -0.211 - 1.953 I
-1.861 -0.8265

-2.028

Factored form gain multiplier: 0.1059
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Plant Case: 9 Element: (2, 1)

Roots of Numerator Roots of Denominator

1.167 1.167
0 0.07795

-0.006472 + 0.07803 I -0.006472 + 0.07803 I
-0.006472 - 0.07803 I -0.006472 - 0.07803 I
-0.219 + 1.607 I -0.211 + 1.953 I
-0 219 - 1.607 I -0.211 - 1.953 I
-2.028 -0.8265

-2.028

Factored form gain multiplier: 2.18075

Plant Case: 9 Element: (2, 2)

Roots of Numerator Roots of Denominator

1.167 1.167
0 0.07795

-0.006472 + 0.07803 I -0.006472 + 0.07803 I
-0.006472 - 0.07803 I -0.006472 - 0.07803 I
-0.2260615727 + 1.759509227 I -0.211 + 1.953 I
-0.2260615727 - 1.759509227 I -0.211 - 1.953 I
-2.028 -0.8265

-2.028

Factored form gain multiplier: -12.119
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A.1.10 Plant Case 10

Plant Case: 10 Element: (i, 1)

Roots of Numerator Roots of Denominator

0.07795 1.167
0 0.07795

-0.009939645444 -0.006472 + 0.07803 I
-0.211 + 1.953 I -0.006472 - 0.07803 I
-0.211 - 1.953 I -0.211 + 1.953 I
-0.5620045698 -0.211 - 1.953 I
-0.8265 -0.8265

-2.028

Factored form gain multiplier: -2.957475

Plant Case: 10 Element: (1, 2)

Roots of Numerator Roots of Denominator

0.07795 1.167
0 0.07795

-0.008933835362 -0.006472 + 0.07803 I
-0.211 + 1.953 I -0.006472 - 0.07803 I
-0.211 - 1.953 I -0.211 + 1.953 I
-0.716404473 -0.211 - 1.953 I
-0.8265 -0.8265

-2.028

Factored form gain multiplier: 0.83865
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Plant Case: 10 Element: (2, 1]

Roots of Numerator Roots of Denominator

1.167 1.167
0 0.07795

-0.006472 + 0.07803 I -0.006472 + 0.07803 I
-0.006472 - 0.07803 I -0.006472 - 0.07803 I
-0.2380753559 + 1.992266599 I -0.211 + 1.953 I
-0.2380753559 - 1.992266599 I -0.211 - 1.953 I
-2.028 -0.8265

-2.028

Factored form gain multiplier: 8.97275

Plant Case: 10 Element: (2, 2)

Roots of Numerator Roots of Denominator

1.167 1.167
0 0.07795

-0.006472 + 0.07803 I -0.006472 + 0.07803 I
-0.006472 - 0.07803 I -0.006472 - 0.07803 I
-0.2231060935 + 1.697351372 I -0.211 + 1.953 I
-0,2231060935 - 1.697351372 I -0.211 - 1.953 I
-2,028 -0.8265

-2.028

Factored form gain multiplier: -10.421
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A. 1.11 Plant Case 11

Plant Case: 11 Element: (1, 1)

Roots of Numerator Roots of Denominator

0.07795 1.167
0 0.07795

-0.009939645444 -0.006472 + 0.07803 I
-0.211 + 1.953 I -0.006472 - 0.07803 I
-0.211 - 1.953 I -0.211 + 1.953 I
-0.5620045698 -0.211 - 1.953 I
-0.8265 -0.8265

-2.028

Factored form gain multiplier: -2.957475

Plant Case: 11 Element: (1, 2}

Roots of Numerator Roots of Denominator

0.07795 1.167
0 0.07795

-0.01334841556 -0.006472 + 0.07803 I
-0.211 + 1.953 I -0.006472 - 0.07803 I
-0.211 - 1.953 I -0.211 + 1.953 I
-0.3260098802 -0.211 - 1.953 I
-0.8265 -0.8265

-2.028

Factored form gain multiplier: 0.62685
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Plant Case: 11 Element: [2, 11

Roots of Numerator Roots of Denominator

1.167 1.167
0 0.07795

-0.006472 + 0.07803 I -0.006472 + 0.07803 I
-0.006472 - 0.07803 I -0.006472 - 0.07803 I
-0.2561175712 + 2.297831558 I -0.211 + 1.953 I
-0.2561175712 - 2.297831558 I -0.211 - 1.953 I
-2.028 -0.8265

-2.028

Factored form gain multiplier: 4.61125

Plant Case: 11 Element: [2, 2]

Roots of Numerator Roots of Denominator

1.167 1.167
0 0.07795

-0.006472 + 0.07803 I -0.006472 + 0.07803 I
-0.006472 - 0.07803 I -0.006472 - 0.07803 I
-0.2231060935 + 1.697351372 I -0.211 + 1.953 I
-0.2231060935 - 1.697351372 I -0.211 - 1.953 I
-2.028 -0.8265

-2.028

Factored form gain multiplier: -10.421
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A. 1.12 Plant Case 12

Plant Case: 12 Element: (1, 1]

Roots of Numerator Roots of Denominator

0.07795 1.167
0 0.07795

-0.01004 -0.006472 + 0.07803 I
-0.211 + 1.953 I -0.006472 - 0.07803 I
-0.211 - 1.953 I -0.211 + 1.953 I
-0.5502 -0.211 - 1.953 I
-0.8265 -0.8265

-2.028

Factored form gain multiplier: -5.862

Plant Case: 12 Element: (1, 2)

Roots of Numerator Roots of Denominator

1.167
0.07795

-0.006472 + 0.07803 I
-0.006472 - 0.07803 I
-0.211 + 1.953 I

-0.211 - 1.953 I
-0.8265
-2.028

Factored form gain multiplier: 0
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Plant Case: 12 Element: (2, 1)

Roots of Numerator Roots of Denominator

1.167
0.07795

-0.006472 + 0.07803 I
-0.006472 - 0.07803 I
-0.211 + 1.953 I
-0.211 - 1.953 I
-0.8265
-2.028

Factored form gain multiplier: 0

Plant Case: 12 Element: (2, 21

Roots of Numcrator Roots of Denominator

1.167 1.167
0 0.07795

-0.006472 + 0.07803 I -0.006472 + 0.07803 I
-0.006472 - 0.07803 I -0.006472 - 0.07803 I
-0.2442 + 2.101 I -0.211 + 1.953 I
-0.2442 - 2.101 I -0.211 - 1.953 I
-2.028 -0.8265

-2.028

Factored form gain multiplier: -3.396
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A.1.13 Plant Case 13

Plant Case: 13 Element: (1, 1)

Roots of Numerator Roots of Denominator

0 0.9645
-0.01261453256 -0A007553 + 0.5384 I
-0.02719 -0.007553 - 0.5384 I
-0.391 + 2.962 I -0.02719
-0.391 - 2.962 I -0.391 + 2.962 I
-1.518569941 -0.391 - 2.962 I
-2.697 -2.697

-3 .223

Factored form gain multiplier: -25.678

Plant Case: 13 Element: fl, 2)
Roots of Numerator Roots of Denominator

0.9645
-0.007553 + 0.5384 I
-0.007553 - 0.5384 I

-0. 02719
-0.391 + 2.962 I

-0.391 - 2.962 I
-2.697
-3.223

Factored form gain multiplier: 0
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Plant Case: 13 Element: (2, 11

Roots of Numerator Roots of Denominator

0.9645
-0.007553 + 0.5384 I
-0.007553 - 0.5384 I
-0.02719
-0.391 + 2.962 I

-0.391 - 2.962 I
-2.697
-3.223

Factored form gain multiplier: 0

Plant Case: 13 Element: {2, 2)

Roots of Numerator Roots of Denominator

0.9645 0.9645
0 -0.007553 + 0.5384 I

-0.007553 + 0.5384 T -0.007553 - 0.5384 I
-0.007553 - 0.5384 I -0.02719
-0.3582378099 + 3.06754481 I -0.391 + 2.962 I
-0.3582378099 - 3.06754481 I -0.391 - 2.962 I
-3.223 -2.697

-3.223

Factored form gain multiplier: -63.74
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A. 1.14 Plant Case 14

Plant Case: 14 Element: (i, 1}

Roots of Numerator Roots of Denominator

0 0.9645
-0.01260976464 -0.007553 + 0.5384 I
-0.02719 -0.007553 - 0.5384 I
-0.391 + 2.962 I -0.02719
-0.391 - 2.962 I -0.391 + 2.962 I
-1.526123846 -0.391 - 2.962 I
-2.697 -2.697

-3.223

Factored form gain multiplier: -13.648

Plant Case: 14 Element: (1, 2)

Roots of Numerator Roots of Denominator

0 0.9645
-0.01262 -0.007553 + 0.5384 I
-0.02719 -0.007553 - 0.5384 I
-0.391 + 2.962 I -0.02719
-0.391 - 2.962 I -0.391 + 2.962 I
-1.51 -0.391 - 2.962 I
-2.697 -2.697

-3.223

Factored form gain multiplier: 3.0075
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Plant Case: 14 Element: (2, 1]

Roots of Numerator Roots of Denominator

0.9645 0.9645
0 -0.007553 + 0.5384 I

-0.007553 + 0.5384 I -0.007553 - 0.5384 I
-0.007553 - 0.5384 I -0.02719
-0.3749 + 3.578 I -0.391 + 2.962 I
-0.3749 - 3.578 I -0.391 - 2.962 I
-3.223 -2.697

-3.223

Factored form gain multiplier: 25.36

Plant Case: 14 Element: {2, 2]

Roots of Numerator Roots of Denominator

0.9645 0.9645
0 -0.007553 + 0.5384 I

-0.007553 + 0.5384 I -0.007553 - 0.5384 I
-0.007553 - 0.5384 I -0.02719

-0.3563974216 + 3.005846427 I -0.391 + 2.962 I
-0.3563974216 - 3.005846427 I -0.391 - 2.962 I
-3.223 -2.697

-3.223

Factored form gain multiplier: -57.4
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A. 1.15 Plant Case 15

Plant Case: 15 Element: 11, 1)

Roots of Numerator Roots of Denominator

0 0.9645
-0.01261716956 -0.007553 + 0.5384 I
-0.02719 -0.007553 - 0.7384 I
-0.391 + 2.962 I -0.02719
-0.391 - 2.962 I -0.391 + 2.962 I
-1.514424371 -0.391 - 2.962 I
-2.697 -2.697

-3.223

Factored form gain multiplier: -24.869

Plant Case: 15 Element: (1, 2)

Roots of Numerator Roots of Denominator

0 0.9645
-0.01254 -0.007553 + 0.5384 I
-0.02719 -0.007553 - 0.5384 I
-0.391 + 2.962 I -0.02719

-0.391 - 2.962 I -0.391 + 2.962 I
-1.646 -0.391 - 2.962 I
-2.697 -2.697

-3.223

Factored form gain multiplier: 3.236
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Plant Case: 15 Element: (2, 11

Roots of Numerator Roots of Denominator

0.9645 0.9645
0 -0 007553 + 0.5384 I

-0.007553 + 0.5384 I -0.007553 - 0.5384 I
-0.007553 - 0.5384 I -0.02719
-0.3541 + 2.927 I -0.391 + 2.962 I
-0.3541 - 2.927 I -0.391 - 2.962 I
-3.223 -2.697

-3.223

Factored form gain multiplier: 6.3825

Plant Case: 15 Element: (2, 21

Roots of Numerator Roots of Denominator

0.9645 0.9645
0 -0.007553 + 0.5384 I

-0.007553 + 0.5384 I -0.007553 - 0.5384 I
-0.007553 - 0.5384 I -0.02719
-0.3610024863 + 3.157962895 I -0.391 + 2.962 I
-0.3610024863 - 3.157962895 I -0.391 - 2.962 I
-3.223 -2.697

-3.223

Factored form gain multiplier: -38.21
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A. 1.16 Plant Case 16

Plant Case: 16 Element: (1, 1]

Roots of Numerator Roots of Denominator

0 0.9645
-0.01261453256 -0.007553 + 0.5384 I
-0.02719 -0.007553 - 0.5384 I
-0.391 + 2.962 I -0.02719
-0.391 - 2.962 I -0.391 + 2.962 I
-i.5185699ýi -0.391 - 2.962 I
-2.697 -2.697

-3 .223

Factored form gain multiplier: -12.839

Plant Case: 16 Element: [1, 2)

Roots of Numerator Roots of Denominator

0 0.9645
-0.01257680361 -0.007553 + 0.5384 I
-0.02719 -0.007553 - 0.5384 I
-0.391 + 2.962 I -0.02719
-0.391 - 2.962 I -0.391 + 2.962 I
-1.580490401 -0.391 - 2.962 I
-2.697 -2.697

-3.223

Factored form gain multiplier: 6.2435
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Plant Case: 16 Element: (2, 1)

Roots of Numerator Roots of Denominator

0.9645 0.9645
0 -0.007553 + 0.5384 I

-0.007553 + 0.5384 I -0.007553 - 0.5384 I
-0.007553 - 0.5384 I -0.02719

-0.3707177207 + 3.456973615 I -0.391 + 2.962 I
-0.3707177207 - 3.456973615 I -0.391 - 2.962 I
-3.223 -2.697

-3.223

Factored form gain multiplier: 31.7425

Plant Case: 16 Element: (2, 2)

Roots of Numerator Roots of Denominator

0.9645 0.9645

0 -0.007553 + 0.5384 I

-0.007553 + 0.5384 I -0.007553 - 0.5384 I

-0.007553 - 0.5384 I -0.02719

-0.3582378099 + 3.06754481 I -0.391 + 2.962 I
-0.3582378099 - 3.06754481 I -0.391 - 2.962 I
-3.223 -2.697

-3.223

Factored form gain multiplier: -31.87
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A. 1.17 Plant Case 17

Plant Case: 17 Element: (1, 11

Roots of Numerator Roots of Denominator

0 0.9645

-0.01261453256 -0.007553 + 0.5384 I

-0.02719 -0.007553 - 0.5384 I
-0.391 + 2.962 I -0.02719

-0.391 - 2.962 I -0.391 + 2.962 I

-1.518569941 -0.391 - 2.962 I

-2.697 -2.697
-3.223

Factored form gain multiplier: -12.839

Plant Case: 17 Element: (1, 21

Roots of Numerator Roots of Denominator

0 0.9645
-0.01207934927 -0.007553 + 0.5384 I

-0.02719 -0.007553 - 0.5384 I
-0.391 + 2.962 T -0.02719

-0.391 - 2.962 I -0.391 + 2.962 I

-2.697 -0.391 - 2.962 I
-3.43542:579 -2.697

-3.223

Factcred form gain multiplier: -0.2285
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Plant Case: 17 Element: 12, 1)

Roots of Numerator Roots of Denominator

0.9645 0.9645
0 -0.007553 + 0.5384 I

-0.007553 + 0.5384 I -0.007553 - 0.5384 I
-0.007553 - 0.5384 I -0.02719
-0.381895442 + 3.771752842 I -0.391 + 2.962 I
-0.381895442 - 3.771752842 I -0.391 - 2.962 I
-3.223 -2.697

-3 .223

Factored form gain multiplier: 18.9775

Plant Case: 17 Element: (2, 21

Roots of Numerator Roots of Denominator

0.9645 0.9645
0 -0.007553 + 0.5384 I

-0.007553 + 0.5384 I -0.007553 - 0.5384 I
-0.007553 - 0.5384 I -0.02719
-0.3582378099 + 3.06754481 I -0.391 + 2.962 I
-0.3582378099 - 3.06754481 I -0.391 - 2.962 I
-3.223 -2.697

-3.223

Factored form gain multiplier: -31.87
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A. 1.18 Plant Case 18

Plant Case: 18 Element: (i, 1)

Roots of Numerator Roots of Denominator

0 0.9645
-0.01262 -0.007553 + 0.5384 I
-0.02719 -0.007553 - 0.5384 I
-0.391 + 2.962 I -0.02719
-0.391 - 2.962 I -0.391 + 2,962 I

-1.51 -0.391 - 2.962 I
-2.697 -2.697

-3.223

Factored form gain multiplier: -24.06

Plant Case: 18 Element: (i, 2)

Roots of Numerator Roots of Denominator

0.9645
-0.007553 + 0.5384 I
-0.007553 - 0.5384 I
-0. 02719
-0.391 + 2.962 I
-0.391 - 2.962 I
-2. 697
-3 .223

Factored form gain multiplier: 0
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Plant Case: 18 Element: [2, 11

Roots of Numerator Roots of Denominator

0 9645
-0.007553 + 0.5384 I

-0.007553 - 0.5384 I

-0 .02719
-0.391 + 2.962 I
-0.391 - 2.962 I

-2.697
-3.223

Factored form gain multiplier: 0

Plant Case: 18 Element: (2, 21

Roots of Numerator Roots of Denominator

0.9645 0.9645
0 -0.007553 + 0.5384 I

-0.007553 + 0.5384 I -0.007553 - 0.5384 I
-0.007553 - 0.5384 I -0.02719
-0.3749 + 3.578 I -0.391 + 2.962 I

-0.3749 - 3.578 I -0.391 - 2.962 I
-3.223 -2.697

-3 .223

Factored form gain multiplier: -12.68
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A. 1.19 Plant Case 19

Plant Case: 19 Element: (1, 1)

Roots of Numerator Roots of Denominator

0 -0.01516 + 0.02343 I
-0.03008318398 -0.01516 - 0.02343 I
-0.03448 -0.03448
-0.4996 + 3.129 I -0.4996 + 3.129 I
-0.4996 - 3.129 I -0.4996 - 3.129 I
-1.079585586 -0.8012 + 6.592 I
-2.171 -0.8012 - 6.592 I

-2.171

Factored form gain multiplier: -34.3625

Plant Case: 19 Element: [1, 2)

Roots of Numerator Roots of Denominator

-0.01516 + 0.02343 I

-0.01516 - 0.02343 I

-0.03448
-0.4996 + 3.129 I
-0.4996 - 3.129 I
-0.8012 + 6.592 I
-0.8012 - 6.592 I
-2.171

Factored form gain multiplier: 0
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Plant Case: 19 Element: {2, 1)

Roots of Numerator Roots of Denominator

-0.01516 + 0.02343 I
-0.01516 - 0.02343 I

-0.03448
-0.4996 + 3.129 I
-0.4996 - 3.129 I

-0.8012 + 6.592 I
-0.8012 - 6.592 I

-2.171

Factored form gain multiplier: 0

Plant Case: 19 Element: {2, 2)

Roots of Numerator Roots of Denominator

0 -0.01516 + 0.02343 I
-0.01516 + 0.02343 I -0.01516 - 0.02343 I
-0.01516 - 0.02343 I -0.03448
-0.3943568208 + 4.656189818 I -0.4996 + 3.129 I
-0.3943568208 - 4.656189818 I -0.4996 - 3.129 I
-0.8012 + 6.592 I -0.8012 + 6.592 I
-0.8012 - 6.592 I -0.8012 - 6.592 I

-2.171

Factored form gain multiplier: -25.818
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A. 1.20 Plant Case 20

Plant Case: 20 Element: fl, 1)

Roots of Numerator Roots of Denominator

0 -0.01516 + 0.02343 1
-0.03019996745 -0.01516 - 0.02343 I
-0.03448 -0.03448
-0.4996 + 3.129 I -0.4996 + 3.129 I
-0.4996 - 3.129 I -0.4996 - 3.129 I
-1.063589349 -0.8012 + 6.592 I
-2.171 -0.8012 - 6.592 I

-2.171

Factored form gain multiplier: -17.9125

Plant Case: 20 Element: [1, 2)

Roots of Numerator Roots of Denominator

0 -0.01516 + 0.02343 I
-0.02996 -0.01516 - 0.02343 I

-0.03448 -0.03448
-0.4996 + 3.129 I -0.4996 + 3.129 I
-0.4996 - 3.129 I -0.4996 - 3.129 I
-1.097 -0.8012 + 6.592 I
-2.171 -0.8012 - 6.592 I

-2.171

Factored form gain multiplier: 4.1125
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Plant Case: 20 Element: [2, 1)

Roots of Numerator Roots of Denominator

0 -0.01516 + 0.02343 I
-0.01516 + 0.02343 I -0.01516 - 0.02343 I
-0.01516 - 0.02343 I -0.03448
-0.3774 + 4.319155473 I -0.4996 + 3.129 I
-0.3774 - 4.319155473 I -0.4996 - 3.129 I
-0.8012 + 6.592 I -0.b012 + 6.592 I
-0.8012 - 6.592 I -0.8012 - 6.592 I

-2.171

Factored form gain multiplier: 23.3

Plant Case: 20 Element: (2, 2)

Roots of Numerator Roots of Denominator

0 -0.01516 + 0.02343 I
-0.01516 + 0.02343 I -0.01516 - 0.02343 I
-0.01516 - 0.02343 I -0.03448
-0.399297224 + 4.749877372 I -0.4996 + 3.129 I
-0.399297224 - 4.749877372 I -0.4996 - 3.129 I
-0.8012 + 6.592 I -0.8012 + 6.592 I
-0.8012 - 6.592 I -0.8012 - 6.592 I

-2.171

Factored form gain multiplier: -19.993
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A. 1.21 Plant Case 21

Plant Case: 21 Element: (1, 1]

Roots of Numerator Roots of Denominator

0 -0.01516 + 0.02343 I
-0.03002242458 -0.01516 - 0.02343 I

-0.03448 -0.03448
-0.4996 + 3.129 I -0.4996 + 3.129 I
-0.4996 - 3.129 I -0.4996 - 3.129 I
-1.088103978 -0.8012 + 6.592 I

-2.171 -0.8012 - 6.592 I
-2.171

Factored form gain multiplier: -33.63125

Plant Case: 21 Element: (i, 2]

Roots of Numerator Roots of Denominator
0----------------- -0. 01516--- . 02343...

0 -0.01516 + 0.02343 I
-0).03448 -0.01516 - 0.02343 1

-0.03459 -0.03448

-0.4996 + 3.129 I -0.4996 + 3.129 I
-0.4996 - 3.129 I -0.4996 - 3.129 1

-0.6861 -0.8012 + 6.592 I

-2.171 -0.8012 - 6.592 I
-2.171

Factored form gain multiplier: 2.925
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Plant Case: 21 Element: (2, 1]

Roots of Numerator Roots of Denominator

0 -0.01516 + 0.02343 I
-0.01516 + 0.02343 I -0.01516 - 0.02343 I
-0.01516 - 0.02343 I -0.03448
-0.4083 + 4.916 I -0.4996 + 3.129 I
-0.4083 - 4.916 I -0.4996 - 3.129 I
-0.8012 + 6.592 I -0.8012 + 6.592 I
-0.8012 - 6.592 I -0.8012 - 6.592 I

-2.171

Factored form gain multiplier: 1.771

Plant Case: 21 Element: (2, 2]

Roots of Numerator Roots of Denominator

0 -0.01516 + 0.02343 I
-0.01516 + 0.02343 I -0.01516 - 0.02343 I
-0.01516 - 0.02343 I -0.03448
-0.3890844027 + 4.554074665 I -0.4996 + 3.129 I
-0.3890844027 - 4.554074665 I -0.4996 - 3.129 I
-0.8012 + 6.592 I -0.8012 + 6.592 I
-0.8012 - 6.592 I -0.8012 - 6.592 I

-2.171

Factored form gain multiplier: -18.734
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A.1.22 Plant Case 22

Plant Case: 22 Element: (1, 1)

Roots of Numerator Roots of Denominator

0 -0.01516 + 0.02343 I
-0.03008318398 -0.01516 - 0.02343 I
-0.03448 -0.03448
-0.4996 + 3.129 I -0.4996 + 3.129 I
-0.4996 - 3.129 I -0.4996 - 3.129 I
-1.079585586 -0.8012 + 6.592 I
-2.171 -0.8012 - 6.592 I

-2.171

Factored form gain multiplier: -17.18125

Plant Case: 22 Element: (i, 2)

Roots of Numerator Roots of Denominator

0 -0.01516 + 0.02343 I
-0.03136799809 -0.01516 - 0.02343 I
-0.03448 -0.03448
-0.4996 + 3.129 I -0.4996 + 3.129 I
-0.4996 - 3.129 1 -0.4996 - 3.129 I
-0.9267337781 -0.8012 + 6.592 I
-2.171 -0.8012 - 6.592 I

-2.171

Factored form gain multiplier: 7.0375
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Plant Case: 22 Element: (2, 1)

Roots of Numerator Roots of Denominator

0 -0.01516 + 0.02343 I
-0.01516 + 0.02343 I -0.01516 - 0.02343 I
-0.01516 - 0.02343 I -0.03448
-0.379582757 + 4.364003618 I -0.4996 + 3.129 I

-0.379582757 - 4.364003618 I -0.4996 - 3.129 I
-0.8012 + 6.592 I -0.8012 + 6.592 I
-0.8012 - 6.592 I -0.8012 - 6.592 I

-2.171

Factored form gain multiplier: 25.071

Plant Case: 22 Element: (2, 2]

Roots of Numerator Roots of Denominator

0 -0.01516 + 0.02343 I
-0.01516 + 0.02343 I -0.01516 - 0.02343 I
-0.01516 - 0.02343 I -0.03448

-0.3943568208 + 4.656189818 I -0.4996 + 3.129 I
-0.3943568208 - 4.656189818 I -0.4996 - 3.129 I
-0.8012 + 6.592 I -0.8012 + 6.592 I
-0.8012 - 6.592 I -0.8012 - 6.592 I

-2.171

Factored form gain multiplier: -12.909
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A.1.23 Plant Case 23

Plant Case: 23 Element: [1, 1I

Roots of Numerator Roots of Denominator

0 -0.01516 + 0.02343 I
-0.03008318398 -0.01516 - 0.02343 I
-0.03448 -0.03448
-0.4996 + 3.129 I -0.4996 + 3.129 I
-0.4996 - 3.129 I -0.4996 - 3.129 I
-1.079585586 -0.8012 + 6.592 I
-2.171 -0.8012 - 6.592 I

-2.171

Factored form gain multiplier: -17.18125

Plant Case: 23 Element: (1, 2)

Roots of Numerator Roots of Denominator

0 -0.01516 + 0.02343 I
-0.02634744696 -0.01516 0.02343 1
-0.03448 -0.03440
-0.4996 + 3.129 I -0.4996 + 3.129 I
-0.4996 - 3.129 I -0.4996 - 3.129 I
-2.101319711 -0.8012 + 6.592 I
-2.171 -0.8012 - 6.592 I

-2.171

Factored form gain multiplier: 1.1875
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Plant Case: 23 Element: (2, 1i

Roots of Numerator Roots of Denominator

0 -0.01516 + 0.02343 I

-0.01516 + 0.02343 I -0.01516 - 0.02343 I

-0.01516 - 0.02343 I -0.03448

-0.3748581309 + 4.266333269 I -0.4996 + 3.129 I

-0.3748581309 - 4.266333269 I -0.4996 - 3.129 I

-0.8012 + 6.592 I -0.8012 + 6.592 I

-0.8012 - 6.592 I -0.8012 - 6.592 I
-2.171

Factored form gain multiplier: 21.529

Plant Case: 23 Element: N2, 2)

Roots of Numerator Roots of Denominator

0 -0.01516 + 0.02343 I
-0 01516 + 0.023,3 I -0.01516 - 0.02343 I

-0.01516 - 0.02343 1 -0.03448

-0.3943568208 + 4.656189818 I -0.4996 + 3.129 I

-0.3943568208 - 4.656189818 I -0.4996 - 3.129 I

-0.8012 + 6.592 I -0.8012 + 6.592 I

-0.8012 - 6.592 I -0.8012 - 6.592 I
-2.171

Factored form gain multiplier: -12.909
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A. 1.24 Plant Case 24

Plant Case: 24 Element: (1, 1)

Roots of Numerator Roots of Denominator
------------------ -0. 01516--- . 02343...

0 -0.01516 + 0.02343 I
-0.02996 -0.01516 - 0.02343 1

-0.03448 -0.03448
-0.4996 + 3.129 I -0.4996 + 3.129 I
-0.4996 - 3.129 I -0.4996 - 3.129 I
-1.097 -0.8012 + 6.592 I
-2.171 -0.8012 - 6.592 I

-2.171

Factored form gain multiplier: -32.9

Plant Case: 24 Element: (1, 2)

Roots of Numerator Roots of Denominator
------------------.- 0. 015- 6--- 0. 02343..

-0.01516 + 0.02343 I
-0.01516 - 0.02343 1

-0.03448
-0.4996 + 3.129 I
-0.4996 - 3.129 I
-0.8012 + 6.592 I
-0.8012 - 6.592 I
-2.171

Factored form gain multiplier: 0
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Plant Case: 24 Element: (2, 1)

Roots of Numerator Roots of Denominator

-0.01516 + 0.02343 I

-0.01516 - 0.02343 I

-0.03448

-0.4996 + 3.129 I

-0.4996 - 3.129 I
-0.8012 + 6.592 I

-0.8012 - 6.592 I
-2.171

Factored form gain multiplier: 0

Plant Case: 24 Element: (2, 2)

Roots of Numerator Roots of Denominator

0 -0.01516 + 0.02343 I

-0.01516 + 0.02343 I -0.01516 - 0.62343 I
-0.01516 - 0.02343 1 -0.03448
-0.3774 + 4.319155473 I -0.4996 + 3.129 I
-0.3774 - 4.319155473 I -0.4996 - 3.129 I
-0.8012 + 6.592 I -0.8012 + 6.592 I
-0.8012 - 6.592 I -0.8012 - 6.592 I

-2. 171

Factored form gain multiplier: -11.65
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A.2 Pe Detenyinants From CAD Package

Plant Case: I

Roots of Numerator of Det[Pe] Roots of Denominator of Det[Pe)
----------------------------- -------------------------------

0 0.3633

0 -0.07682999737 + 0.2065 1

-0.01750899094 -0.07682999737 - 0.2065 1

-0.2236638493 + 1.029339632 1 -0-1041

-0.2236638493 - 1.029339632 1 -0.2741 + 1.909 1

-0.4616997602 -0.2741 - 1.909 1

-0.6835

-1.3

Plant Case: 2

Roots of Numerator of Det(Pe] Roots of Denominator of Det[Pe]
----------------------------- -------------------------------

0 0.3633

0 -0.07682999737 + 0.2065 1

-0.01617592182 -0.07682999737 - 0.2065 1

-0.2031816462 + 0.8466260833 1 -0.1041

-0ý2031816462 - 0.8466260833 1 -0-2741 + 1.909 1

-0.4708634843 -0.2741 - 1.909 1

-0.6835

-1.3

Plant Case: 3

Roots of Numerator of Det[Pej Roots of Denominator of Det[Pe]
----------------------------- -------------------------------

0 0.3633

0 -0A7682999737 + 0.2065 1

-0.01800469395 -0,07682999737 - 0.2065 1

-0.2357205606 + 1.130855201 1 -0,1041

-0.2357205606 - 1.130855201 1 -0.2741 + 1.909 1

-0.4582391881 -0.2741 - 1.909 1

-0,6835

-1.3
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Plant Case: 4

Roots of Numerator of Det[Pe] Roots of Denominator of Det(Pe]
- - - - - - - - - - - - - - - - - - - - - - - - - - - - -.. - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

0 0.3633
0 -0.07682999737 + 0.2065 I

-0.02559309899 -0.07682999737 - 0.2065 I
-0.2255463507 + 0.9379562951 I -0.1041
-0.2255463507 - 0.9379562951 I -0.2741 + 1.909 I
-0.4123328591 -0.2741 - 1.909 I

-0.6835
-1.3

Plant Case: 5

Roots of Numerator of Det[Pe] Roots of Denominator of Det[Pe]
- - - - - - - - - - - - - - - - - - - - - - - - - - - - -.. - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

0 0.3633

0 -0.07682999737 + 0.2065 I
-0.007096831889 -0.07662999737 - 0.2065 1

-0.1695335828 + 0.7432415914 I -0.1041
-0.1695335828 - 0.7432415914 I -0.2741 + 1.909 I
-0.5339345123 -0.2741 - 1.909 I

-0.6835
-1.3

Plant Case: 6

Roots of Numerator of Det[Pe] Roots of Denominator of Det[Pe]
- - - - - - - - - - - - - - - - - - - - - - - - - - - - -.. - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

0 0.3633
0 -0.07682999737 + 0.2065 I

-0.01822 -0.07682999737 - 0.2065 1

-0.3017 + 1.562 I -0.1041
-0.3017 - 1.562 I -0.2741 + 1.909 I
-0.4568 -0.2741 - 1.909 I

-0.6835
-1.3

A-50



Plant Case: 7

Roots of Numerator of Det[Pe] Roots of Denominator of Det[Pe]
- - - - - - - - - - - - - - - - - - - - - - - - - - - - -.. - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

0 1.167
0 0.07795

-0.009939645444 -0.006472 + 0.07803 I

-0.2231060935 + 1.697351372 I -0.006472 - 0.07803 I

-0.2231060935 - 1.697351372 I -0.211 + 1.953 I
-0.5620045698 -0.211 - 1.953 I

-0.8265
-2.028

Plant Case: 8

Roots of Numerator of Det[Pe] Roots of Denominator of Det(Pe]
- - - - - - - - - - - - - - - - - - - - - - - - - - - - -.. - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

0 1.167
0 0.07795

-0.009815072143 -0.006472 + 0.07803 I

-0.2183048925 + 1.608183851 I -0.006472 - 0.07803 I

-0.2183048925 - 1.608183851 I -0.211 + 1.953 I

-0.5773169868 -0.211 - 1.953 I

-0.8265

-2.028

Plant Case: 9

Roots of Numerator of Det[Pej Roots of Denominator of Det(Pe]

0 1.167

0 0.07795

-0.01001950949 -0.006472 + 0.07803 I

-0.2257480147 + 1.760063131 I -0.006472 - 0.07803 I

-0.2257480147 - 1.760063131 I -0.211 + 1.953 I

-0.5525460655 -0.211 - 1.953 I

-0.8265

-2.028
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Plant Case: 10

Roots of Numerator of Det(Pe] Roots of Denominator of Det[Pe]
- - - - - - - - - - - - - - - - - - - - - - - - - - - - -.. - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

0 1.167

0 0.07795

-0.01069676636 -0.006472 + 0.07803 I

-0.231887918 + 1.587406074 I -0.006472 - 0.07803 I

-0.231887918 - 1.587406074 I -0.211 + 1.953 I

-0.4844613815 -0.211 - 1.953 I

-0.8265

-2.028

Plant Case: 11

Rcots of Numerator of Det[Pe] Roots of Denominator of Det[Pe)
- - - - - - - - - - - - - - - - - - - - - - - - - - - - -.. - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

0 1.167

0 0.07795

-0.009569120179 -0.006472 + 0.07803 I
-0.2083665407 + 1.62577185 I -0.006472 - 0.07803 I
-0.2083665407 - 1.62577185 I -0.211 + 1.953 I
-0.6090927582 -0.211 - 1.953 I

-0.8265
-2.028

Plant Case: 12

Roots of Numerator of Det[Pe] Roots of Denominator of Det[Pe]
- - - - - - - - - - - - - - - - - - - - - - - - - - - - -.. - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

0 1.167

0 0.07795
-0.01004 -0.006472 + 0.07803 I
-0.2442 + 2.101 I -0.006472 - 0.07803 I
-0.2442 - 2.101 I -0.211 + 1.953 I
-0.5502 -0.211 - 1.953 I

-0.8265
-2.028
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Plant Case: 13

Roots of Numerator of Det[Pe] Roots of Denominator of Det[Pej
------------------------------ -------------------------------

0 0.9645

0 -0.007553 + 0.5384 I

-0.01261453256 -0.007553 - 0.5384 I

-0.3582378099 + 3.06754481 I -0.02719

-0.3582378099 - 3.06754481 I -0.391 + 2.962 I

-1.518569941 -0.391 - 2.962 I
-2.697
-3.223

Plant Case: 14

Roots of Numerator of Det[Pej Roots of Denominator of Det[Pe]
------------------------------ -------------------------------

0 0.9645

0 -0.007553 + 0.5384 I

-0.01260815216 -0.007553 - 0.5384 I

-0.354043529 + 2.937631878 I -0.02719

-0.354043529 - 2.937631878 I -0.391 + 2.962 I

-1.528579891 -0.391 - 2.962 I
-2.697
-3.223

Plant Case: 15

Roots of Numerator of Det[Pe] Roots of Denominator of Det[Pe]

------------------------------ -------------------------------

0 0.9645

0 -0.007553 + 0.5384 I

-0.01261877154 -0.007553 - 0.5384 I

-0.3609727016 + 3.162975977 I -0.02719

-0.3609727016 - 3.162975977 I -0.391 + 2.962 I

-1.511867408 -0.391 - 2.962 I
-2.697
-3.223
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Plant Case: 16

Roots of Numerator of Det[Pe] Roots of Denominator of Det[Pe)
- - - - - - - - - - - - - - - - - - - - - - - - - - - - -.. - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

0 0.9645
0 -0.007553 + 0.5384 I

-0.01268136836 -0.007553 - 0.5384 I
-0.3638212458 + 2.642435984 I -0.02719
-0.3638212458 - 2.642435984 I -0.391 + 2.962 I
-1,425766242 -0.391 - 2.962 I

-2.697
-3.223

Plant Case: 17

Roots of Numerator of Det[Pe] Roots of Denominator of Det[Pe]
- - - - - - - - - - - - - - - - - - - - - - - - - - - - -.. - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

0 0.9645
0 -0.007553 + 0.5384 I

-0.01259578413 -0.007553 - 0.5384 I
-0.3541334715 + 3.077600345 I -0.02719
-0.3541334715 - 3.077600345 I -0.391 + 2.962 I
-1,54738922 -0.391 - 2.962 I

-2.697
-3.223

Plant Case: 18

Roots of Numerator of Det[Pej Roots of Denominator of Det[Pe]
- - - - - - - - - - - - - - - - - - - - - - - - - - - - -.. - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

0 0.9645
0 -0,007553 + 0.5384 I

-0 01262 -0.007553 - 0.5384 I
-0.3749 + 3.578 I -0.02719
-0.3749 - 3.578 I -0.391 + 2.962 I
-1.51 -0.391 - 2.962 I

-2.697
-3.223
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Plant Case: 19

Roots of Numerator of Det[Pe] Roots of Denominator of Det[Pe]
----------------------------- -0. 01----- . 02........43 ........

0 -0.01516 + 0.02343 I
0 -0.01516 - 0.02343 1

-0.03008318398 -0.03448
-0.3943568208 + 4.656189818 I -0.4996 + 3.129 I
-0.3943568208 - 4.656189818 I -0.4996 - 3.129 I
-1.079585586 -0.8012 + 6.592 I

-0.8012 - 6.592 I
-2.170999975

Plant Case: 20

Roots of Numerator of Det[Pe3 Roots of Denominator of Det[Pe]
----------------------------- -0. 01516-- . 02343...............

0 -0.01516 + 0.02343 I
0 -0 01516 - 0.02343 1

-0.03027103524 -0.03448
-0.4059826056 + 4.898011078 I -0.4996 + 3.129 I
-0.4059826056 - 4.898011078 I -0.4996 - 3.129 I
-1.054028453 -0.8012 + 6.592 I

-0.8012 - 6.592 I
-2. 170999975

Plant Case: 21

Roots of Numerator of Det[Pe] Roots of Denominator of Det[Pe]
- - - - - - - - - - - - - - - - - - - - - - - - - - - - -.. - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

0 -0.01516 + 0.U2343 I
0 -0.01516 - 0.02343 I

-0.0299951359 -0.03448
-0.3886587722 + 4.551009274 I -0.4996 + 3.129 I
-0.3886587722 - 4.551009274 I -0.4996 - 3.129 I
-1.091958693 -0.8012 + 6.592 I

-0.8012 - 6.592 I

-2. 170999975
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Plant Case: 22

Roots of Numerator of Det[Pe] Roots of Denominator of Det[Pe]
----------------------------- -0. 01516-- . 02343...............

0 -0.01516 + 0.02343 I
0 -0.01516 - 0.02343 1

-0.0281768207 -0.03448
-0.5658911377 + 5.6216463 I -0.4996 + 3.129 I
-0.5658911377 - 5.6216463 I -0.4996 - 3.129 I
-1.442976725 -0.8012 + 6.592 I

-0.8012 - 6.592 I

-2.170999975

Plant Case: 23

Roots of Numerator of Det[Pe) Roots of Denominator of Det[Pe)
0---------------------------- -0. 01516-- . 02343...............

0 -0.01516 + 0.02343 I
0 -0.01516 - 0.02343 1

-0.03096598996 -0.03448
-0.3853668983 + 4.706629116 I -0.4996 + 3.129 I
-0.3853668983 - 4.706629116 I -0.4996 - 3.129 I
-0.9691322627 -0.8012 + 6.592 I

-0.8012 - 6.592 I

-2.171

Plant Cast: 24

Roots of Numerator of Det[Pe) Roots of Denominator of Det[Pe]

0 -0.01516 + C."2343 I
0 -0.01516 - 0.02343 I

-0.02996 -0.03448
-0.3774 + 4.319155473 I -0.4996 + 3.129 I
-0.3774 - 4.319155473 I -0.4996 - 3.129 I
-1.097 -0.8012 + 6.592 I

-0.8012 - 6.592 I
-2.170999975
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A.3 Q Matrix from CAD Package

A.3.1 Plant Case I

Plant Case: 1 Element: (1, 1)

Roots of Numerator Roots of Denominator

0 0.3633
-0.01750899094 -0.07683 + 0.2065 I
-0.4616997602 -0.07683 - 0.2065 1

-1.3

Factored form gain multiplier: -2.17555

Piart Case: 1 Element: (1, 2]

Roots of Numerator Roots of Denominator

Factored form qain multiplier: Infinity

Plant Case: 1 Element: (2, 1)

Roots of Numerator Roots of Denominator

Factored form gain multiplier- Infinity

plant Case: I Element: (2, 2)

Roots of Numerator Roots of Denominator

0 -0.1041

-0 2236638493 + 1.029339632 I -0.2741 + 1.909 I
-0.2236638493 - 1.029339632 I -0.2741 - 1.909 I

-0.6835

Factored form gain multiplier: -5.549
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A.3.2 Plant Case 2

Plant Case: 2 Element: {1, 1)

Roots of Numerator Roots of Denominator

0 0. 3633
-0.01617592182 -0.07683 + 0.2065 I
-0.2031816462 + 0.8466260833 I -0.07683 - 0.2065 I
-0.2031816462 - 0.8466260833 I -0.2153286826 + 0.9546662645 I
-0.4708634843 -0.2153286826 - 0.9546662645 1

-1.3

Factored form gain multiplier: -0.9381346215

Plant Case: 2 Element: (1, 2]

Roots of Numeratur Roots of Denominator

0 -0.01822

-0.01,317592182 -0.1041
-q.2031816462 + 0.8466260833 I -0.2741 + 1.909 I
"-c.2031816462 - 0.8466260833 I -0,2741 - 1.909 I
-0 .7)8634843 -0.4568

-0 .6835

Factored form gain multiplier: -16.82768488
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Plant Case: 2 Element: {2, .]

Roots of Numerator Roots of Denominator

0 0.3633
-0.01617592182 -0.07683 + 0.2065 I
-0.2031816462 ± 0.8466260833 I -0.07683 - 0.2065 I
-0.2031816462 - 0.8466260833 I -0.3017 + 1.562 I
-0.4708634843 -0.3017 - 1.562 I

-1.3

Factored form gain multiplier: -2.195769339

Plant Case: 2 Element: (2, 2]

Roots of Numerator Roots of Denominator

0 -0.01677417266
-0.01617592182 -0.1041
-0.2031816462 + 0.8466260833 I -0.2741 + 1.909 I
-0.2031816462 - 0.8466260833 I -0.2741 - 1.909 I
-0.4708634843 -0.4668627603

-0.6835

Factored form gain multiplier: -4.447390596
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A.3.3 Plant Case 3

Plant Case: 3 Element: (1, 1)

Roots of Numerator Roots of Denominator

0 0.3633
-0.01800469395 -0.07683 + 0.2065 I
-0.2357205606 + 1.130855201 I -0.07683 - 0.2065 I
-0.2357205606 - 1.130855201 I -0.2362887311 + 1.132993767 I
-0.4582391881 -0.2362887311 - 1.132993767 I

-1.3

Factored form gain multiplier: -2.226220249

Plant Case: 3 Element: 11, 2)

Roots of Numerator Roots of Denominator

0 -0.06537
-0.01800469395 -0.1041
-0.2357205606 + 1.130855201 I -0.2589
-0. 2 35720560o - 1.130855201 I -0.2741 + 1.909 I
-0.4582391881 -0.2741 - 1.909 I

-0.6835

Factored form gain multiplier: 60.9494543
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Plant Case: 3 Element: [2, 1]

Roots of Numerator Roots of Denominator

0 0.3633
-0.01800469395 -0.07683 + 0.2065 I
-0.2357205606 + 1.130855201 I -0.07683 - 0.2065 I
-0.2357205606 - 1.130855201 I -0.205 + 0.853 I
-0.4582391881 -0.205 - 0.853 I

-1.3

Factored form gain multiplier: -13.16442881

Plant Case: 3 Element: [2, 2)

Roots of Numerator Roots of Denominator

0 -0.01786739384
-0.01800469395 -0.1041
-0.2357205606 + 1.130855201 I -0.2741 + 1.909 I
-0.2357205606 - 1.130855201 I -0.2741 - 1.909 I
-0.4582391881 -0.4592182832

-0.6835

Factored form gain multiplier: -3.340680271
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A.3.4 Plant Case 4

Plant Case: 4 Element: [1, 1i

Roots of Numerator Roots of Denominator

0 0.3633
-0.02559309899 -0.07683 + 0.2065 I
-0.2255463507 + 0.9379562951 I -0.07683 - 0.2065 I
-0.2255463507 - 0.9379562951 I -0.2236638493 + 1.029339632 I
-0.4123328591 -0.2236638493 - 1.029339632 I

-1.3

Factored form gain multiplier: -0.9333336412

Plant Case: 4 Element: [1, 2)

Roots of Numerator Roots of Denominator

0 -0.003009051506
-0.02559309899 -0.1041
-0.2255463507 + 0.9379562951 I -0.2741 + 1.909 I
-0.2255463507 - 0.9379562951 I -0.2741 - 1.909 I
-0.4123328591 -0.5869269321

-0.6835

Factored form gain multiplier: -16.32745389
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Plant Case: 4 Element: (2, 1)

Roots of Numerator Roots of Denominator

0 0.3633
-0.02559309899 -0.07683 + 0.2065 I
-0.2255463507 + 0.9379562951 I -0.07683 - 0.2065 I
-0.2255463507 - 0.9379562951 I -0.2816656426 + 1.444520055 I
-0.4123328591 -0.2816656426 - 1.444520055 I

-1.3

Factored form gain multiplier: -0.9584655085

Plant Case: 4 Element: (2, 2)

Roots of Numerator Roots of Denominator

0 -0.01750899094
-0.02559309899 -0.1041
-0.2255463507 + 0.9379562951 I -0.2741 + 1.909 I
-0.2255463507 - 0.9379562951 I -0.2741 - 1.909 I
-0.4123328591 -0.4616997602

-0.6835

Factored form gain multiplier: -2.380578877
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A.3.5 Plant Case 5

Plant Case: 5 Element: (1, 1)

Roots of Numerator Roots of Denominator

0 0.3633
-0.007096831889 -0.07683 + 0.2065 I
-0.1695335828 + 0.7432415914 I -0.07683 - 0.2065 I
-0.1695335828 - 0.7432415914 I -0.2236638493 + 1.029339632 I
-0.5339345123 -0.2236638493 - 1.029339632 I

-1.3

Factored form gain multiplier: -0.8594337133

Plant Case: 5 Element: [1, 2)

Roots of Numerator Roots of Denominator

0 -0.027i399588
-0.007096831889 -0.1041
-0.1695335828 + 0.7432415914 I -0.2741 + 1.909 I
-0.1695335828 - 0.7432415914 I -0.2741 - 1.909 I
-0.5339345123 -0.4023613724

-0.6835

Factored form gain multiplier: -5.955291802
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Plant Case: 5 Element: (2, 1]

Roots of Numerator Roots of Denominator

0 0.3633
-0.007096831889 -0.07683 + 0.2065 I
-0.1695335828 + 0.7432415914 I -0.07683 - 0..')065 I
-0.1695335828 - 0.7432415914 I -0.3359094012 + 1.743875067 I

-0.5339345123 -0.3359094012 - 1.743875067 I
-1.3

Factored form gain multiplier: -1.507030392

Plant Case: 5 Element: (2, 2]

Roots of Numerator Roots of Denominator

0 -0.01750899094
-0.007096831889 -0.1041
-0.1695335828 + 0.7432415914 I -0.2741 + 1.909 I
-0.1695335828 - 0.7432415914 I -0.2741 - 1.909 I
-0.5339345123 -0.4616997602

-0.6835

Factored form gain multiplier: -2.192088288
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A.3.6 Plant Case 6

Plant Case: 6 Element: fl, 1)

Roots of Numerator Roots of Denominator

0 0.3633
-0.01822 -0.07683 + 0.2065 I
-0.4568 -0.07683 - 0.2065 I

-1.3

Factored form gain multiplier: -2.236

Plant Case: 6 Element: [1, 2)

Roots of Numerator Roots of Denominator

Factored form gain multiplier: Infinity

Plant Case: 6 Element: (2, 1)

Roots of Numerator Roots of Denominator

Factored form gain multiplier: Infinity

Plant Case: 6 Element: [2, 2)

Roots of Numerator Roots of Denominator

0 -0.1041
-0.30W7 + 1,562 1 -0.2741 + 1.909 I

-0.3017 - 1.562 I -0.2741 - 1.909 I
-0.6835

Factored form gain multiplier: -1.071
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A.3.7 Plant Case 7

Plant Case: 7 Element: J1, 1)

Roots of Numerator Roots of Denominator

0 1.167
-0.009939645444 -0.006472 + 0.07803 I
-0.5620045698 -0.006472 - 0.07803 I

-2.028

Factored form gain multiplier: -5.91495

Plant Case: 7 Element: fl, 2)

Roots of Numerator Roots of Denominator

Factored form gain multiplier: Infinity

Plant Case: 7 Element: {2, 1)

Roots of Numerator Roots of Denominator

Factored form gain multiplier: Infinity

Plant Case: 7 Element: {2, 2)

Roots of Numerator Roots of Denominator

0 0.07795
-0.2231060935 + 1.697351372 I -0.211 + 1.953 I
-0.2231060935 - 1.697351372 I -0.211 - 1.953 I

-0.8265

Factored form gain multiplier: -20.842
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A.3.8 Plant Case 8

Plant Case: 8 Element: [I, 1)

Roots of Numerator Roots of Denominator

0 1.167
-0.009815072143 -0.006472 + 0.07803 I

-0.2183048925 + 1.608183851 I -0.006472 - 0.07803 I
-0.2183048925 - 1.608183851 I -0.2212351442 + 1.656795028 I
-0.5773169868 -0.2212351442 - 1.656795028 I

-2.028

Factored form gain multiplier: -2.723981446

Plant Case: 8 Element: (1, 2)

Roots of Numerator Roots of Denominator

0 0. 07795
-0.009815072143 -0.01004
-0.2183048925 + 1.608183851 I -0.211 + 1.953 I

-0.2183048925 - 1.608183851 I -0.211 - 1.953 I
-0.577316q868 -0.5502

-0.8265

Factored form gain multiplier: -71.16738424
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Plant Case: 8 Element: (2, 1)

Roots of Numerator Roots of Denominator

0 1.167
-0.009815072143 -0.006472 + 0.07803 I
-0.2183048925 + 1.608183851 I -0.006472 - 0.07803 I
-0.2183048925 - 1.608183851 I -0.2442 + 2.101 I
-0.5773169868 -0.2442 - 2.101 I

-2.028

Factored form gain multiplier: -7.677841696

Plant Case: 8 Element: (2, 2)

Roots of Numerator Roots of Denominator

0 0.07795
-0.009815072143 -0.009845163158
-0.2183048925 + 1.608183851 I -0.211 + 1.953 I
-0.2183048925 - 1.608183851 I -0.211 - 1.953 I
-0.5773169868 -0.5735955769

-0.8265

Factored form gain multiplier: -17.4761309
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A.3.9 Plant Case 9

Plant Case: 9 Element: [1, 1i

Roots of Numerator Roots of Denominator

0 1.167
-0.01001950949 -0.006472 + 0.07803 I
-0.2257480147 + 1.760063131 I -0.006472 - 0.07803 I
-0.2257480147 - 1.760063131 I -0.2260615727 + 1.759509227 I
-0.5525460655 -0.2260615727 - 1.759509227 I

-2.028

Factored form gain multiplier: -5.869418855

Plant Case: 9 Element: J1, 2)

Roots of Numerator Roots of Denominator

0 0.07795
-O.C1001950949 -0.006697
-0.2257480147 + 1.760063131 I -0.211 + 1.953 I
-0.2257480147 - 1.760063131 I -0.211 - 1.953 I
-0.5525460655 -0.8265

-1.861

Factored form gain multiplier: -671.6854306
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Plant Case: 9 Element: (2, 1)

Roots of Numerator Roots of Denominator

0 1.167
-0.01001950949 -0.006472 + 0.07803 I
-0.2257480147 + 1.760063131 I -0.006472 - 0.07803 1
-0.2257480147 - 1.760063131 I -0.219 + 1.607 I
-0.5525460655 -0.219 - 1.607 I

-2.028

Factored form gain multiplier: -32.61790077

Plant Case: 9 Element. (2, 2)

Roots of Numerator Roots of Denominator

0 0.07795
-0.01001950949 -0.009989054852

-0.2257480147 + 1.760063131 I -0.211 + 1.953 I

-0.2257480147 - 1.760063131 I -0.211 - 1.953 I

-0.5525460655 -0.5561293643

-0.8265

Factored form gain multiplier: -12.07978078
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A.3.10 Plant Case 10

Plant Case: 10 Element: [1, 1)

Roots of Numerator Roots of Denominator

0 1.167

-0.01069676636 -0.006472 + 0.07803 I

-0.231887918 + 1.587406074 I -0.006472 - 0.07803 I

-0.231887918 - 1.587406074 I -0.2231060935 + 1.697351372 I

-0.4844613815 -0,2231060935 - 1.697351372 I

-2.028

Factored form gain multiplier: -2.235375702

Plant Case: 10 Element: (1, 2)

Roots of Numerator Roots of Denominator

0 0.07795

-0.01069676636 -0.008933835362

-0.231887918 + 1.587406074 I -0.211 + 1.953 I

-0.231887918 - 1.587406074 I -0.211 - 1.953 I
-0.4844613815 -0.716404473

-0.8265

Factored form qain multiplier: -27.77660548
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Plant Case: 10 Element: (2, 1)

Roots of Numerator Roots of Denominator

0 1.167
-0.01069676636 -0.006472 + 0.07803 I
-0.231887918 + 1.587406074 I -0.006472 - 0.07803 I
-0.231887918 - 1.587406074 I -0.2380753559 + 1.992266599 I
-0.4844613815 -0.2380753559 - 1.992266599 I

-2.028

Factored form gain multiplier: -2.596177336

Plant Case: 10 Element: (2, 2)

Roots of Numerator Roots of Denominator

0 0.07795
-0.01069676636 -0.009939645444
-0.231887918 + 1.587406074 I -0.211 + 1.953 I
-0.231887918 - 1.587406074 I -0.211 - 1.953 I
-0.4844613815 -0.5620045698

-0.8265

Factored form gain multiplier: -7.87660088

A-73



A.3.11 Plant Case 11

Plant Case: 11 Element: (1, 1]

Roots of Numerator Roots of Denominator

0 1.167
-0.009569120179 -0.006472 + 0.07803 I
-0.2083665407 + 1.62577185 I -0.006472 - 0.07803 I
-0.2083665407 - 1.62577185 I -0.2231060935 + 1.697351372 I
-0.6090927582 -0.2231060935 - 1.697351372 I

-2.028

Factored form gain multiplier: -2.680096431

Plant Case: 11 Element: (i, 2}

Roots of Numerator Roots of Denominator

0 0.07795
-0.009569120179 -0.01334841556
-0.2083665407 + 1.62577185 I -0.211 + 1.953 I
-0.2083665407 - 1.62577185 I -0.211 - 1:953 I
-0.6090927582 -0.3260098802

-0.8265

Factored form gain multiplier: -44.55497314

A-74



Plant Case: 11 Element: (2, 1)

Roots of Numerator Roots of Denominator

0 1.167
-0.009569120179 -0.006472 + 0.07803 I
-0.2083665407 + 1.62577185 I -0.006472 - 0.07803 I
-0.2083665407 - 1.62577185 I -0.2561175712 + 2.297831558 I
-0.6090927582 -0.2561175712 - 2.297831558 I

-2.028

Factored form gain multiplier: -6.056770922

Plant Case: 11 Element: {2, 21

Roots of Numerator Roots of Denominator

0 0.07795
-0.009569120179 -0.009939645444
-0.2083665407 + 1.62577185 I -0.211 + 1.953 I
-0.2083665407 - 1.62577185 I -0.211 - 1.953 I
-0.6090927582 -0.5620045698

-0.8265

Factored form gain multiplier: -9.443625022

A-75



A.3.12 Plant Case 12

Plant Case: 12 Element: (1, 1i

Roots of Numerator Roots of Denominator

0 1.167
-0.01004 -0.006472 + 0.07803 I
-0.5502 -0.006472 - 0.07803 I

-2.028

Factored form gain multiplier: -5.862

Plant Case: 12 Element: {1, 2)

Roots of Numerator Roots of Denominator

Factored form gain multiplier: Infinity

Plant Case: 12 Element: (2, 1)

Roots of Numerator Roots of Denominator

Factored form gain multiplier: Infinity

Plant Case: 12 Element: (2, 2)

Roots of Numerator Roots of Denominator

0 0.07795
-0.2442 + 2.101 I -0.211 + 1.953 I
-0.2442 - 2.101 I -0.211 - 1.953 I

-0.8265

Factored form gain multiplier: -3.396

A-76



A.3.13 Plant Case 13

Plant Case: 13 Element: (1, 1]

Roots of Numerator Roots of Denominator

0 0.9645
-0.01261453256 -0.007553 + 0.5384 I
-1.518569941 -0.007553 - 0.5384 I

-3.223

Factored form gain multiplier: -25.678

Plant Case: 13 Element: (1, 2)

Roots of Numerator Roots of Denominator

Factored form gain multiplier: Infinity

Plant Case: 13 Element: (2, 1)

Roots of Numerator Roots of Denominator

Factored form gain multiplier: Infinity

Plant Case: 13 Element: j2, 2)

Roots of Numerator Roots of Denominator

0 -0.02719
-0.3582378099 + 3.06754481 I -0.391 + 2.962 I
-0.3582378099 - 3.06754481 I -0.391 - 2.962 I

-2.697

Factored form gain multiplier: -63.74

A-77



A.3.14 Plant Case 14

Plant Case: 14 Element: (1, 1i

Roots of Numerator Roots of Denominator

0 0.9645
-0.01260815216 -0.007553 + 0.5384 I
-0.354043529 + 2.937631878 I -0.007553 - 0.5384 I
-0.354043529 - 2.937631878 I -0.3563974216 + 3.005846427 I
-1.528579891 -0.3563974216 - 3.005846427 I

-3.223

Factored form gain multip 'er: -12.31925087

Plant Case: 14 Element: (1, 2)

Roots of Numerator Roots of Denominator

0 -0.01262
-0.01260815216 -0.02719
-0.354043529 + 2.937631878 I -0.391 + 2.962 I
-0.354043529 - 2.937631878 I -0.391 - 2.962 I
-1.528579891 -1.51

-2.697

Factored form gain multiplier: -235.120532

A-78



Plant Case: 14 Element: (2, 1)

Roots of Numerator Roots of Denominator

0 0.9645
-0.01260815216 -0.007553 + 0.5384 I
-0.354043529 + 2.937631878 I -0.007553 - 0.5384 I
-0.354043529 - 2.937631878 I -0.3749 + 3.578 I
-1.528579891 -0.3749 - 3.578 I

-3.223

Factored form gain multiplier: -27.88347792

Plant Case: 14 Element: (2, 2]

Roots of Numerator Roots of Denominator

0 -0. 01260976464

-0.01260815216 -0.02719
-0.354043529 + 2.937631878 I -0.391 + 2.962 I
-0.354043529 - 2.937631878 I -0.391 - 2.962 I
-1.528579891 -1.526123846

-2.697

Factored form gain multiplier: -51.81162075

A-79



A.3.15 Plant Case 15

Plant Case: 15 Element: (1, 1)

Roots of Numerator Roots of Denominator

0 0.9645
-0.01261877154 -0.007553 + 0.5384 I
-0.3609727016 + 3.162975977 I -0.007553 - 0.5384 I
-0.3609727016 - 3.162975977 I -0.3610024863 + 3.157962895 I
-1.511867408 -0.3610024863 - 3.157962895 I

-3.223

Factored form gain multiplier: -24.32846689

Plant Case: 15 Element: (1, 2)

Roots of Numerator Roots of Denominator

0 -0.01254
-0.01261877154 -0.02719
-0.3609727016 + 3.162975977 I -0.391 + 2.962 I
-0.3609727016 - 3.162975977 I -0.391 - 2.962 I
-1.511867408 -1.646

-2.697

Factored form gain multiplier: -287.2653646

A-80



Plant Case: 15 Element: (2, 11

Roots of Numerator Roots of Denominator

0 0.9645
-0.01261877154 -0.007553 + 0.5384 I
-0.3609727016 + 3.162975977 I -0.007553 - 0.5384 I
-0.3609727016 - 3.162975977 I -0.3541 + 2.927 I
-1.511867408 -0.3541 - 2.927 I

-3.223

Factored form gain multiplier: -145.646803

Plant Case: 15 Element: (2, 2)

Roots of Numerator Roots of Denominator

0 -0.01261716956
-0.01261877154 -0.02719
-0.3609727016 + 3.162975977 I -0.391 + 2.962 I
-0.3609727016 - 3.162975977 I -0.391 - 2.962 I
-1.511867408 -1.514424371

-2.697

Factored form gain multiplier: -37.37949737

A-8.1



A.3.16 Plant Case 16

Plant Case: 16 Element: (1, 1)

Roots of Numerator Roots of Denominator

0 0.9645
-0.01268136836 -0.007553 + 0.5384 I
-0.3638212458 + 2.642435984 I -0.007553 - 0.5384 I
-0.3638212458 - 2.642435984 I -0.3582378099 + 3.06754481 I
-1.425766242 -0.3582378099 - 3.06754481 I

-3.223

Factored form gain multiplier: -6.620477918

Plant Case: 16 Element: (1, 2)

Roots of Numerator Roots of Denominator

0 -0.01257680361
-0.01268136836 -0.02719

-0.3638212458 + 2.642435984 I -0.391 + 2.962 I
-0.3638212458 - 2.642435984 I -0.391 - 2.962 I
-1.425766242 -1.580490401

-2.697

Factored form gain multiplier: -33.79428706

A-82



Plant Case: 16 Element: (2, 11

Roots of Numerator Roots of Denominator

0 0.9645
-0.01268136836 -0.007553 + 0.5384 I
-0.3638212458 + 2.642435984 I -0.007553 - 0.5384 I
-0.3638212458 - 2.642435984 I -0.3707177207 + 3.456973615 I
-1.425766242 -0.3707177207 - 3.456973615 I

-3.223

Factored form gain multiplier: -6.647070371

Plant Case: 16 Element: [2, 2)

Roots of Numerator Roots of Denominator

0 -0.01261453256
-0.01268136836 -0.02719
-0.3638212458 + 2.642435984 I -0.391 + 2.962 I
-0.3638212458 - 2.642435984 I -0.391 - 2.962 I
-1.425766242 -1.518569941

-2.697

Factored form gain multiplier: -16.43388358

A-83



A.3.17 Plant Case 17

Plant Case: 17 Element: (1, 1)

Roots of Numerator Roots of Denominator

0 0.9645
-0.01259578413 -0.007553 + 0.5384 I
-0.3541334715 + 3.077600345 I -0.007553 - 0.5384 I
-0.3541334715 - 3.077600345 I -0.3582378099 + 3.06754481 I
-1.54738922 -0.3582378099 - 3.06754481 I

-3.223

Factored form gain multiplier: -12.97506397

Plant Case: 17 Element: (1, 2)

Roots of Numerator Roots of Denominator

0 -0.01207934927
-0.01259578413 -0.02719
-0.3541334715 + 3.077600345 I -0.391 + 2.962 I
-0.3541334715 - 3.077600345 I -0.391 - 2.962 I
-1.54738922 -2.697

-3.435429579

Factored form gain multiplier: 1809.694918

A-84



Plant Case: 17 Element: (2, 1]

Roots of Numerator Roots of Denominator

0 0.9645
-0.01259578413 -0.007553 + 0.5384 I
-0.3541334715 + 3.077600345 I -0.007553 - 0.5384 I
-0.3541334715 - 3.077600345 I -0.381895442 + 3.771752842 I
-1.54738922 -0.381895442 - 3.771752842 I

-3.223

Factored form gain multiplier: -21.78976624

Plant Case: 17 Element: (2, 2)

Roots of Numerator Roots of Denominator

0 -0.01261453256

-0.01259578413 -0.02719
-0.3541334715 + 3.077600345 I -0.391 + 2.962 I
-0.3541334715 - 3.077600345 I -0.391 - 2.962 I
-1.54738922 -1.518569941

-2.697

Factored form gain multiplier: -32.20774895

A-85



A.3.18 Plant Case 18

Plant Case: 18 Element: fl, 1)

Roots of Numerator Roots of Denominator

0 0.9645
-0.01262 -0.007553 + 0.5384 I
-1.51 -0.007553 - 0.5384 I

-3.223

Factored torm gain multiplier: -24.06

Plant Case: 18 Element: (1, 2]

Roots of Numerator Roots of Denominator

Factored form gain multiplier: Infinity

Plant Case: 18 Element: (2, 11

Roots of Numerator Roots of Denominator

Factored form gain multiplier: Infinity

-lant Case. 18 Element: (2, 2]

Roots ct Numerator Roots of Denominator

0 -0.02719
-:? 3749 3.578 I -0.391 + 2.962 I
-D.3749 - 3.578 I -0.391 - 2.962 I

-2.697

Factored form gain multiplier: -12.68

A-86



A.3.19 Plant Case 19

Plant Case: 19 Element: il, 1)

Roots of Numerator Roots of Denominator

0 -0.01516 + 0.02343 I
-0.03008318398 -0.01516 - 0.02343 I
-1.079585586 -0.8012 + 6.592 I

-0.8012 - 6.592 I

Factored form gain multiplier: -34.3625

Plant Case: 19 Element: t1, 2)

Roots of Numerator Roots of Denominator

Factored form gain multiplier: Infinity

Plant Case: 19 Element: [2, 1)

Roots of Numerator Roots of Denominator

Factored form gain multiplier: Infinity

Plant Case: 19 Element: (2, 21

Roots of Numerator Roots of Denominator

0 -0.03448
-0.3943568208 + 4.656189818 I -0.4996 + 3.129 I
-0.3943568208 - 4.656189818 I -0.4996 - 3.129 I

-2.171

Factored form gain multiplier: -25.818

A-87



A.3.20 Plant Case 20

Plant Case: 20 Element: (1, 1)

Roots of Numerator Roots of Denominator

0 -0.01516 + 0.02343 I
-0.03027103524 -0.01516 - 0.02343 I
-0.4059826056 + 4.898011078 I -0.399297224 + 4.749877372 I
-0.4059826056 - 4.898011078 I -0.399297224 - 4.749877372 I
-1.054028453 -0.8012 + 6.592 I

-0.8012 - 6.592 I

Factored form gain multiplier: -13.11976004

Plant Case: 20 Element: (1, 2)

Roots of Numerator Roots of Denominator

0 -0.02996
-0.03027103524 -0.03448
-0.4059826056 + 4.898011078 I -0.4996 + 3.129 I
-0.4059826056 - 4.898011078 I -0.4996 - 3.129 I
-1.054028453 -1.097

-2.171

Factored form gain multiplier: -63.78197264

A-88



Plant Case: 20 Element: (2, 1)

Roots of Numerator Roots of Denominator

0 -0.01516 + 0.02343 I
-0.03027103524 -0.01516 - 0.02343 I
-0.4059826056 + 4.898011078 I -0.3774 + 4.319155473 I
-0.4059826056 - 4.898011078 I -0.3774 - 4.319155473 I
-1.054028453 -0.8012 + 6.592 I

-0.8012 - 6.592 I

Factored form gain multiplier: -11.25765504

Plant Case: 20 Element: (2, 2}

Roots of Numerator Roots of Denominator

0 -0.03019996745
-0.03027103524 -0.03448
-0.4059826056 + 4.898011078 I -0.4996 + 3.129 I
-0.4059826056 - 4.898011078 I -0.4996 - 3.129 I
-1.054028453 -1.063589349

-2.171

Factored form gain multiplier: -14.64359316

A-89



A.3.21 Plant Case 21

Plant Case: 21 Element: {1, 1)

Roots of Numerator Roots of Denominator

0 -0.01516 + 0.02343 I
-0.0299951359 -0.01516 - 0.02343 I
-0.3886587722 + 4.551009274 I -0.3890844027 + 4.554074665 I
-0.3886587722 - 4.551009274 I -0.3890844027 - 4.554074665 I
-1-091958693 -0.8012 + 6.592 I

-0.8012 - 6.592 I

Factored form gain multiplier: -33.35473804

Plant Case: 21 Element: (1, 21

Roots of Numerator Roots of Denominator

0 -0.03448
-0.0299951359 -0.03459
-0.3886587722 + 4.551009274 I -0.4996 + 3.129 I
-0.3886587722 - 4.551009274 I -0.4996 - 3.129 I
-1.091958693 -0.6861

-2.171

Factored form gain multiplier: -213.6299701

A-90



Plant Case: 21 Element: (2, 1]

Roots of Numerator Roots of Denominator

0 -0.01516 + 0.02343 I
-0.0299951359 -0.01516 - 0.02343 I
-0.3886587722 + 4.551009274 I -0.4083 + 4.916 I
-0.3886587722 - 4.551009274 I -0.4083 - 4.916 I
-1.091958693 -0.8012 + 6.592 I

-0.8012 - 6.592 I

Factored form gain multiplier: -352.8332369

Plant Case: 21 Element: (2, 21

Roots of Numerator Roots of Denominator

0 -0.03002242458
-0.0299951359 -0.03448
-0.3886587722 + 4.551009274 I -0.4996 + 3.129 I
-0.3886587722 - 4.551009274 I -0.4996 - 3.129 I
-1.091958693 -1.088103978

-2.171

Factored form gain multiplier: -18.57997138

A-91



A.3.22 Plant Case 22

Plant Case: 22 Element: (1, 1)

Roots of Numerator Roots of Denominator

0 -0.01516 + 0.02343 I

-0.0281768207 -0.01516 - 0.02343 I

-0.5658911377 + 5.6216463 I -0.3943568208 + 4.656189818 I

-0.5658911377 - 5.6216463 I -0.3943568208 - 4.656189818 I

-1.442976725 -0.8012 + 6.592 1
-0.8012 - 6.592 I

Factored form gain multiplier: -3.513486231

Plant Case: 22 Element: [1, 2)

Roots of Numerator Roots of Denominator

0 -0.03136799809
-0.0281768207 -0.03448
-0.5658911377 + 5.6216463 I -0.4996 + 3.129 I
-0.5658911377 - 5.6216463 I -0.4996 - 3.129 I

-1.442976725 -0.9267337781
-2.171

Factored form gain multiplier: -6.444844583

A-92



Plant Case: 22 Element: [2, 11

Roots of Numerator Roots of Denominator

0 -0.01516 + 0.02343 I
-0.0281768207 -0.01516 - 0.02343 I
-0.5658911377 + 5.6216463 I -0.379582757 + 4.364003618 I
-0.5658911377 - 5,6216463 I -0.379582757 - 4.364003618 I
-1.442976725 -0.8012 + 6.592 I

-0.8012 - 6.592 I

Factored form gain multiplier: -1.809085946

Plant Case: 22 Element: (2, 23

Roots of Numerator Roots of Denominator

0 -0.03008318398
-0.0281768207 -0.03448
-0.5658911377 + 5.6216463 I -0.4996 + 3.129 I
-0.5658911377 - 5.6216463 I -0.4996 - 3.129 I
-1.442976725 -1.079585586

-2.171

Factored form gain multiplier: -2.639830848

A-93



A.3.23 Plant Case 23

Plant Case: 23 Element: (1, 11

Roots of Numerator Roots of Denominator

0 -0.01516 + 0.02343 I
-0.03096598996 -0.01516 - 0.02343 I
-0.3853668983 + 4.706629116 I -0.3943568208 + 4.656189818 I
-0.3853668983 - 4.706629116 I -0.3943568208 - 4.656189818 I
-0.9691322627 -0.8012 + 6.592 I

-0.8012 - 6.592 I

Factored form gain multiplier: -15.20079547

Plant Case: 23 Element: (1, 2)

Roots of Numerator Roots of Denominator

0 -0.02634744696
-0.03096598996 -0.03448
-0.3853668983 + 4.706629116 I -0.4996 + 3.129 I
-0.3853668983 - 4.706629116 I -0.4996 - 3.129 I
-0.9691322627 -2.101319711

-2.171

Factored form gain multiplier: -165.2438474

A-94



Plant Case: 23 Element: (2, 1)

Roots of Numerator Roots of Denominator

0 -0.01516 + 0.02343 I
-0.03096598996 -0.01516 - 0.02343 I
-0.3853668983 + 4.706629116 I -0.3748581309 + 4.266333269 I
-0.3853668983 - 4.706629116 I -0.3748581309 - 4.266333269 I
-0.9691322627 -0.8012 + 6.592 I

-0.8012 - 6.592 I

Factored form gain multiplier: -9.114546368

Plant Case: 23 Element: [2, 2)

Roots of Numerator Roots of Denominator

0 -0.03008318398
-0.03096598996 -0.03448
-0.3853668983 + 4.706629116 1 -0.4996 + 3.129 I
-0.3853668983 - 4.706629116 I -0.4996 - 3.129 I
-0.9691322627 -1.079585586

-2.171

Factored form gain multiplier: -11.42100073

A-95



A.3.24 Plant Case 24

Plant Case: 24 Element: (i, 1)

Roots of Numerator Roots of Denominator

0 -0.01516 + 0.02343 I
-0.02996 -0.01516 - 0.02343 I

-1.097 -0.8012 + 6.592 I
-0.8012 - 6.592 I

Factored form gain multiplier: -32.9

Plant Case: 24 Element: [1, 2)

Roots of Numerator Roots of Denominator

Factored form gain multiplier: Infinity

Plant Case: 24 Element: {2, 1)

Roots of Numerator Roots of Denominator

Factored form gain multiplier: Infinity

Plant Case: 24 Element: [2, 2)

Roots of Numerator Roots of Denominator

0 -0.03448
-0.3774 + 4.319155473 I -0.4996 + 3.129 I
-0.3774 - 4.319155473 1 -0.4996 - 3.129 I

-2.171

Factored form gain multiplier: -11.65

A-96



B Appendix B - Robert Betzold's Design

B. I Pe Matrix Transfer Functions From CAD Package

B. 1.1 Plant Case I

Plant Case: 1 Element: [i, 1]

Roots of Numerator Roots of Denominator
-0.087--- 0.794... -0--.009.03.44.18...8

-0.087 + 0.7945 I -0.009303144518 + 0.8902165661 I
-0.087 - 0.7945 1 -0.009303144518 - 0.8902165661 1

-22.3459 -0.009359976213
-0.6203193063

-22.34857028

Factored form gain multiplier: 0.7278

Plant Case: 1 Element: (1, 2]

Roots of Numerator Roots of Denominator
2. 038------------- -0-----------.009 0. 8

2.038 -0.009303144518 + 0.8902165661 I
-1.631 -0.009303144518 - 0.8902165661 1

-22.3459 -0.009359976213
-0.6203193063

-22.34857028

Factored form gain multiplier: 0.3288683694

B-1



Plant Case: 1 Element: (2, 1)

Roots of Numerator Roots of Denominator
-0.0..03 -0---------.0093031.890215661-

-0.0603 -0.009303144518 + 0.8902165661 I
-2.438 -0.009303144518 - 0.8902165661 1

-22.3459 -0.009359976213
-0.6203193063

-22.34857028

Factored form gain multiplier: 0.02317192691

Plant Case: 1 Element: (2, 2)

Roots of Numerator Roots of Denominator
0.0157............ -0.009303144518.+..8

0.0157 -0.009303144518 + 0.8902165661 I
-0.5238 -0.009303144518 - 0.8902165661 1

-22.3459 -0.009359976213
-22.77 -0.6203193063

-22.34857028

Factored form gain multiplier: 0.023

B-2



B.1.2 Plant Case2

Plant Case: 2 Element: [1, 1i

Roots of Numerator Roots of Denominator
-- - -------- ----------------------------
-0.137 + 1.017 I 0.001342491142 + 1.024203412 I
-0.137 - 1.017 1 0.001342491142 - 1.024203412 1

-30.297 0.0002242280203

-0.892504982
-30.27768085

Factored form gain multiplier: 0.7088

Plant Case: 2 Element: (1, 2]

Roots of Numerator Roots of Denominator
---------------- -.--------------------

2.93 0.001342491142 + 1.024203412 I
-2.178 0.001342491142 - 1.024203412 I

-30.297 0.0002242280203
-0.892504982

-30.27768085

Factored form gain multiplier: 0.3608436364
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Plant Case: 2 Element: (2, 1)

Roots cf Numerator Roots of Denominator
1.58---0.001342491142 ---. 024203412--

1.58 0.001342491142 + 1.024203412 I
-0-095 0.001342491142 - 1.024203412 1

-30297 0.0002242280203
-0.892504982

-30.27768085

Factored form gain multiplier: -0.04083621399

Plant Case: 2 Element: (2, 21

Roots of Numerator Roots of Denominator
-.----32--------0--. 00. 34249.. 42... . 024

0.032 0.001342491142 + 1.024203412 I
-0.7228 0.001342491142 - 1.024203412 1

-29.46 0.0002242280203
-30.297 -0.892504982

-30.27768085

Factored form gain multiplier: 0.028
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B. 1.3 Plant Case 3

Plant Case: 3 Element: (1, 1)

Roots of Numerator Roots of Denominator

-0.0006 0
-0.006 -0.01371701971 + 0.008810265786 I
-0.153 + 0.5226 I -0.01371701971 - 0.008810265786 I
-0.153 - 0.5226 I -0.02524080608 - 0.7384883801 I
-4.12 -0.02524080608 + 0.7384883801 I

-1.135459827
-4 .114539658

Factored form gain multiplier: 1.434

Plant Case: 3 Element: fl, 2)

Roots of Numerator Roots of Denominator

1.78 0
-0.0006 -0.01371701971 + 0.008810265786 I
-0.006 -0.01371701971 - 0.008810265786 I
-0.932 -0.02524080608 - 0.7384883801 I
-4.12 -0.02524080608 + 0.7384883801 I

-1.135459827
-4.114539658

Factored form gain multiplier: 0.1352158809

Plant Case: 3 Element: {2, 1)
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Roots of Numerator Roots of Denominator

67.97 0
C -0.01371701971 + 0.008810265786 I

-0.006 -0.01371701971 - 0.008810265786 I
-0.093 -0 02524080608 - 0.7384883801 I
-4.12 -0.02524080608 + 0.7384883801 I

-1.135459827
-4.114539658

Factored form gain multiplier: -0.00456

Plant Case: 3 Element: (2, 2)

Roots of Numerator Roots of Denominator

0.04 0
0 -0.01371701971 + 0.008810265786 I

-0.0006 -0.01371701971 - 0.008810265786 I
-1.26 -0.02524080608 - 0.7384883801 I
-3.79 -0.02524080608 + 0.7384883801 I
-4.12 -1.135459827

-4.114539658

Factored form gain multiplier: 0.038

B-6



B.2 Pe Determinants From CAD Package

Plant Case: 1

Roots of Numerator of Det[Pe] Roots of Denominator of Det[Pe]
-.----45--------2----------3- -0. 009303144518--- 0. 8902165661.

-22.34582333 -0.009303144518 + 0.8902165661 I
-22.34597894 -0.009303144518 - 0.8902165661 1

-0.009359976213
-0.6203193063

-22.34857028

Plant Case: 2

Roots of Numerator of Det[Pe] Roots of Denominator of Det[Pe]
-3-.296.........961 ..... 0.-- 1342491142---

-30.2969961 0.001342491142 + 1.024203427 I
-30.2970039 0.001342491142 - 1.024203427 1

0.0002242280203
-0.892504982

-30.27768085

Plant Case: 3

Roots of Numerator of Det[Pe] Roots of Denominator of Det[Pe]

-0.0006 0
-0.006 -0.01371701971 + 0.008810265786 I
-4.119999964 -0.01371701971 - 0.008810265786 I

-4.120000036 -0.02524080608 - 0.7384883801 I
-0.02524080608 + 0.7384883801 I
-1.135459827
-4 .114539658
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B.3 Q Matrix Transfer Functions From CAD Package

B.3.1 Plant Case I

Plant Case: 1 Element: {1, 1i

Roots of Numerator Roots of Denominator

-22.3459 0.0157
-0.5238

-22.77

Factored form gain multiplier: 0.7278

Plant Case: 1 Element: {1, 2)

Roots of Numerator Roots of Denominator

-22.3459 2.038
-1.631

Factored form gain multiplier: -0.0509

Plant Case: 1 Element: (2, 1)

Roots of Numerator Roots of Denominator

-22.3459 -0.0603
-2.438

Factored form gain multiplier: -0.7224

Plant Case: 1 Element: (2, 2)

Roots of Numerator Roots of Denominator

-22.3459 -0.087 + 0.7945 I
-0.087 - 0.7945 I

Factored form gain multiplier: 0.023
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B.3.2 Plant Case 2

Plant Case: 2 Element: (1, 1]

Roots of Numerator Roots of Denominator

-30.297 0.032
-0.7228

-29.46

Factored form gain multiplier: 0.7088

Plant Case: 2 Element: (1, 2}

Roots of Numerator Roots of Denominator

-30.297 2.93
-2.178

Factored form gain multiplier: -0.055

Plant Case: 2 Element: (2, 1)

Roots of Numerator Roots of Denominator

-30.297 1.58
-0.095

Factored form gain multiplier: 0.486

Plant Case: 2 Element: (2, 2)

Roots of Numerator Roots of Denominator

-30.297 -0.137 + 1.017 I
-0.137 - 1.017 I

Factored form gain multiplier: 0.028
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B.3.3 Plant Case 3

Plant Case: 3 Element: (1, 11

Roots of Numerator Roots of Denominator

-0.006 0.04
-4.1199931 0

-1.26
-3.79

Factored form gain multiplier: 1.434

Plant Case: 3 Element: (1, 2]

Roots of Numerator Roots of Denominator

-4.1199931 1.78
-0.932

Factored form gain multiplier: -0.403

Plant Case: 3 Element: (2, 11

Roots of Numerator Roots of Denominator

-0.0006 67.97
-4.1199931 0

-0.093

Factored form gain multiplier: 11.95

Plant Case: 3 Element: {2, 2)

Roots of Numerator Roots of Denominator

-4.1199931 -0.153 + 0.5226 I
-0.153 - 0.5226 I

Factored form gain multiplier: 0.038
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B.4 Q Matrix from CAD Package

B.4.1 Plant Case 1

Plant Case: 1 Element: [1, 1)

Roots of Numerator Roots of Denominator

-22.3459 0.0157
-0.5238

-22.77

Factored form gain multiplier: 0.7278

Plant Case: 1 Element: (1, 2)

Roots of Numerator Roots of Denominator

-22.3459 2.038
-1.631

Factored form gain multiplier: -0.0509

Plant Case: 1 Element: (2, 1)

Roots of Numerator Roots of Denominator

-22.3459 -0.0603
-2.438

Factored form gain multiplier: -0.7224

Plant Case: 1 Element: (2, 2]

Roots of Numerator Roots of Denominator

-22.3459 -0.087 + 0.7945 I
-0.087 - 0.7945 I

Factored form gain multiplier: 0.023
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B.4.2 Plant Case 2

Plant Case: 2 Element: (1, 1)

Roots of Numerator Roots of Denominator

-30.297 0.032
-0.7228

-29.46

Factored form gain multiplier: 0.7088

Plant Case: 2 Element: (1, 2]

Roots of Numerator Roots of Denominator

-30.297 2.93

-2.178

Factored form gain multiplier: -0.055

Plant Case: 2 Element: J2, 11

Roots of Numerator Roots of Denominator

-30.297 1.58
-0.095

Factored form gain multiplier: 0.486

Plant Case: 2 Element: (2, 2)

Roots of Numerator Roots of Denominator

-30.297 -0.137 + 1.017 I
-0.137 - 1.017 I

Factored form gain multiplier: 0.028
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B.4.3 Plant Case 3

Plant Case: 3 Element: (1, 1i

Roots of Numerator Roots of Denominator

-0.006 0.04

-4.1199931 0
-1.26
-3.79

Factored form gain multiplier: 1.434

Plant Case: 3 Element: (1, 2)

Roots of Numerator Roots of Denominator

-4.1199931 1.78
-0.932

Factored form gain multiplier: -0.403

Plant Case: 3 Element: (2 13

Roots of Numerator Roots of Denominator

-0.0006 67.97
-4.1199931 0

-0.093

Factored form gain multiplier: 11.95

Plant Case: 3 Element: (2, 21

Roots of Numerator Roots of Denominator

-4.1199931 -0.153 + 0.5226 I
-0.153 - 0.5226 I

Factored form gain multiplier: 0.038
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